Skip to main content
Log in

Sublethal effects of imidacloprid exposure on Spalangia endius, a pupal parasitoid of filth flies

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Parasitoids and neonicotinoids can both suppress economically harmful filth fly populations. However, sublethal effects of neonicotinoids have not previously been studied for commonly used species of filth fly parasitoids. Exposure to an LC50 of imidacloprid decreased the ability of surviving individuals of the parasitoid wasp Spalangia endius Walker (Hymenoptera: Pteromalidae) to kill house fly pupae under some conditions. In an unburied-hosts experiment, significantly more flies and fewer parasitoids emerged in the LC50 imidacloprid treatment versus the LC10 or controls. Parasitoid sex ratio and longevity were not affected. However, in a buried-hosts experiment, parasitoid and fly emergence were independent of treatment. ELISA (enzyme-linked immunosorbent assay) showed lower imidacloprid residues in or on parasitoids exposed to the media in which hosts were buried. Our findings suggest that substrate may reduce pesticides on biological control agents that burrow, making them more effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alam MJ, Zurek L (2004) Association of Escherichia coli O157:H7 with houseflies on a cattle farm. Appl Environ Microbiol 70:7578–7580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birkemoe T, Oyrehagen H (2010) Parasitism of the house fly parasitoid Spalangia cameroni on Norwegian pig farms: local effect of release method. BioControl 55:583–591

    Article  Google Scholar 

  • Burgess ER, King BH (2015) Compatibility of the parasitoid wasp Spalangia endius (Hymenoptera: Pteromalidae) and insecticides against Musca domestica (Diptera: Muscidae) as evaluated by a new index. J Econ Entomol 108:986–992

    Article  PubMed  Google Scholar 

  • Burgess ER, King BH (2016) Behavior and survival of the filth fly parasitoids Spalangia endius and Urolepis rufipes (Hymenoptera: Pteromalidae) in response to three granular house fly baits and components. Environ Entomol (in press)

  • Butler SM, Gerry AC, Mullens BA (2007) House fly (Diptera: Muscidae) activity near baits containing (Z)-9-tricosene and efficacy of commercial toxic fly baits on a southern California dairy. J Econ Entomol 100:1489–1495

    Article  CAS  PubMed  Google Scholar 

  • Cox L, Koskinen WC, Celis R, Yen PY, Hermosin MC, Cornejo J (1998) Sorption of imidacloprid on soil clay mineral and organic components. Soil Sci Soc Am J 62:911–915

    Article  CAS  Google Scholar 

  • Cresswell JE, Robert F-XL, Florance H, Smirnoff N (2013) Clearance of ingested neonicotinoid pesticide (imidacloprid) in honey bees (Apis mellifera) and bumblebees (Bombus terrestris). Pest Manag Sci 70:332–337

    Article  PubMed  Google Scholar 

  • Desneux N, Decourtye A, Delpuech J-M (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    Article  CAS  PubMed  Google Scholar 

  • Ferguson H, Neal SO, Walsh D, Galvin K, Vásquez V, Yost M (2014) Fly control news to moo about: survey of pest management practices on Washington dairy farms April 2014. Washington State University Extension, Prosser. http://wastatedairy.com/wp-content/uploads/2014/04/WSU-Extension-dairy-survey-results-Apr2014forprint.pdf Accessed 26 Sept 2016

  • Floate KD (2003) Field trials of Trichomalopsis sarcophagae (Hymenoptera: Pteromalidae) in cattle feedlots: a potential biocontrol agent of filth flies (Diptera: Muscidae). Can Entomol 135:599–608

    Article  Google Scholar 

  • Geden CJ (2002) Effect of habitat depth on host location by five species of parasitoids (Hymenoptera: Pteromalidae, Chalcididae) of house flies (Diptera: Muscidae) in three types of substrates. Environ Entomol 31:411–417

    Article  Google Scholar 

  • Geden CJ, Rutz DA, Miller RW, Steinkraus DC (1992) Susceptibility of house flies (Diptera: Muscidae) and five pupal parasitoids (Hymenoptera: Pteromalidae) to abamectin and seven commercial insecticides. J Econ Entomol 85:435–440

    Article  CAS  PubMed  Google Scholar 

  • Gerry AC, Zhang D (2009) Behavioral resistance of house flies, Musca domestica (Diptera: Muscidae) to imidacloprid. US Army Med Dep J 4:54–59

    Google Scholar 

  • Gibson GAP, Floate KD (2004) Filth fly parasitoids; on dairy farms in Ontario and Quebec, Canada. Can Entomol 136:407–417

    Article  Google Scholar 

  • Hinkle NC (2015) Animals: fly control in livestock facilities. In: Horton DL (ed) Georgia Pest Management Handbook, 36th Commercial Edition. Cooperative Extension Special Bulletin 28. University of Georgia, Athens, pp 63–65

    Google Scholar 

  • Kaufman PE, Nunez SC, Mann RS, Geden CJ, Scharf ME (2010) Nicotinoid and pyrethroid insecticide resistance in houseflies (Diptera: Muscidae) collected from Florida dairies. Pest Manag Sci 66:290–294

    Article  CAS  PubMed  Google Scholar 

  • King BH (2002) Breeding strategies in females of the parasitoid wasp Spalangia endius: effects of mating status and body size. J Insect Behav 15:181–193

    Article  Google Scholar 

  • King BH, Colyott KL, Chesney AR (2014) Livestock bedding effects on two species of parasitoid wasps of filth flies. J Insect Sci 14:185

    Article  CAS  PubMed  Google Scholar 

  • Kristensen M, Jespersen JB (2004) Susceptibility of spinosad in Musca domestica (Diptera: Muscidae) field populations. J Econ Entomol 97:1042–1048

    Article  CAS  PubMed  Google Scholar 

  • Kurwadkar ST, Dewinne D, Wheat R, McGahan DG, Mitchell FL (2013) Time dependent sorption behavior of dinotefuran, imidacloprid and thiamethoxam. J Environ Sci Health B 48:237–242

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Bao SW, Song Y, Lu HY, Xu JX (2010) Effects of imidacloprid on the orientation behavior and parasitizing capacity of Anagrus nilaparvatae, an egg parasitoid of Nilaparvata lugens. BioControl 55:473–483

    Article  CAS  Google Scholar 

  • Machtinger ET, Leppla NC, Sanders CS (2012) Pest management perceptions and practices for equine farms in north and central Florida. University of Florida, Institute of Food and Agricultural Sciences, Gainesville. IFAS Publication ENY-2028. http://edis.ifas.ufl.edu/in983. Accessed 26 Sept 2016

  • Malik A, Singh N, Satya S (2007) House fly (Musca domestica): a review of control strategies for a challenging pest. J Environ Sci Health B 42:453–469

    Article  CAS  PubMed  Google Scholar 

  • Mandeville JD, Mullens BA, Yu DS (1990) Impact of selected pesticides on field population dynamics of parasitic Hymenoptera (Pteromalidae) in caged-layer poultry manure in southern California, USA. Med Vet Entomol 4:261–268

    Article  CAS  PubMed  Google Scholar 

  • McKay T, Steelman CD, Brazil SM, Szalanski AL (2007) Sustained mass release of pupal parasitoids (Hymenoptera: Pteromalidae) for control of Hydrotaea aenescens and Musca domestica (Diptera: Muscidae) in broiler-breeder poultry houses in Arkansas. J Agric Urban Entomol 24:67–85

    Article  Google Scholar 

  • Mehlhorn H, Mencke N, Hansen O (1999) Effects of imidacloprid on adult and larval stages of the flea Ctenocephalides felis after in vivo and in vitro application: a light- and electron-microscopy study. Parasitol Res 85:625–637

    Article  CAS  PubMed  Google Scholar 

  • Murillo AC, Gerry AC, Gallagher NT, Peterson NG, Mullens BA (2014) Laboratory and field assessment of cyantraniliprole relative to existing fly baits. Pest Manag Sci 71:752–758

    Article  PubMed  Google Scholar 

  • Myint WW, Walter GH (1990) Behaviour of Spalangia cameroni males and sex ratio theory. Oikos 59:163–174

    Article  Google Scholar 

  • Nurita AT, Abu Hassan A (2010) Comparative performance of two commercial neonicotinoid baits against filth flies under field conditions. Trop Biomed 27:559–565

    CAS  PubMed  Google Scholar 

  • Pham-Delègue MH, Decourtye A, Kaiser L, Devillers J (2002) Behavioural methods to assess the effects of pesticides on honey bees. Apidologie 33:425–432

    Article  Google Scholar 

  • Pitzer JB, Kaufman PE, Geden CJ, Hogsette J (2011) The ability of selected pupal parasitoids (Hymenoptera: Pteromalidae) to locate stable fly hosts in a soiled equine bedding substrate. Environ Entomol 40:88–93

    Article  PubMed  Google Scholar 

  • Pospischil R, Junkersdorf J, Horn K (2005) Control of houseflies Musca domestica (Diptera: Muscidae) with imidacloprid WG 10 in pig farms (Germany). Proceedings of the Fifth International Conference on Urban Pests, Perniagaan Ph’ng @ P&Y Design Network

  • Rogers ME, Potter DA (2003) Effects of spring imidacloprid application for white grub control on parasitism of Japanese beetle (Coleoptera: Scarabaeidae) by Tiphia vernalis (Hymenoptera: Tiphiidae). J Econ Entomol 96:1412–1419

    Article  PubMed  Google Scholar 

  • Romero A, Hogsette JA, Coronado A (2010) Distribution and abundance of natural parasitoid (Hymenoptera: Pteromalidae) populations of house flies and stable flies (Diptera: Muscidae) at the University of Florida Dairy Research Unit. Neotrop Entomol 39:424–429

    Article  PubMed  Google Scholar 

  • Rouchaud J, Thirion A, Wauters A, VandeSteene F, Benoit F, Ceustermans N, Gillet J, Marchand S, Vanparys L (1996) Effects of fertilizer on insecticides adsorption and biodegradation in crop soils. Arch Environ Contam Toxicol 31:98–106

    Article  CAS  PubMed  Google Scholar 

  • Rueda LM, Axtell RC (1985) Effect of depth of house fly pupae in poultry manure in parasitism by six species of Pteromalidae (Hymenoptera). J Entomol Sci 20:444–449

    Google Scholar 

  • Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, Furlan L, Gibbons DW, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke CH, Liess M, Long E, McField M, Mineau P, Mitchell EAD, Morrissey CA, Noome DA, Pisa L, Settele J, Stark JD, Tapparo A, van Dyck H, van Praagh J, van der Sluijs JP, Whitehorn PR, Wiemers M (2015) Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res 22:5–34

    Article  CAS  Google Scholar 

  • Skovgård H (2002) Dispersal of the filth fly parasitoid Spalangia cameroni (Hymenoptera: Pteromalidae) in a swine facility using fluorescent dust marking and sentinel pupal bags. Environ Entomol 31:425–431

    Article  Google Scholar 

  • Skovgård H (2006) Search efficiency of Spalangia cameroni and Muscidifurax raptor on Musca domestica pupae in dairy cattle farms in Denmark. BioControl 51:49–64

    Article  Google Scholar 

  • Skovgård H, Nachman G (2004) Biological control of house flies Musca domestica and stable flies Stomoxys calcitrans (Diptera: Muscidae) by means of inundative releases of Spalangia cameroni (Hymenoptera: Pteromalidae). Bull Entomol Res 94:555–567

    Article  PubMed  Google Scholar 

  • Smith L, Rutz DA, Scoles GA (1989) Influence of habitat and temperature on dispersal behaviour of two pteromalid parasitoids of houseflies during an inundative release at a dairy barn. Med Vet Entomol 3:169–178

    Article  CAS  PubMed  Google Scholar 

  • Sohrabi F, Shishehbor P, Saber M, Mosaddegh MS (2014) Effects of buprofezin and imidacloprid on the functional response of Eretmocerus mundus Mercet. Plant Prot Sci 50:145–150

    CAS  Google Scholar 

  • Stafford KC III (2008) Fly management handbook a guide to biology, dispersal, and management of the house fly and related flies for farmers, municipalities, and public health officials Bulletin 1013. The Connecticut Agricultural Experiment Station, New Haven

    Google Scholar 

  • Talley JL, Wayadande AC, Wasala LP, Gerry AC, Fletcher J, DeSilva U, Gilliland SE (2009) Association of Escherichia coli O157:H7 with filth flies (Muscidae and Calliphoridae) captured in leafy greens fields and experimental transmission of E. coli O157:H7 to spinach leaves by house flies (Diptera: Muscidae). J Food Prot 72:1547–1552

    Article  CAS  PubMed  Google Scholar 

  • Taylor DB, Moon RD, Mark DR (2012) Economic impact of stable flies (Diptera: Muscidae) on dairy and beef cattle production. J Med Entomol 49:198–209

    Article  PubMed  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Townsend L (2015a) Ent-28 Insecticide control on poultry—2015. University of Kentucky College of Agriculture, Food and Environment, Lexington. http://pest.ca.uky.edu/EXT/Recs/ENT28-Poultry.pdf. Accessed 15 Sept 2015

  • Townsend L (2015b) Residual fly sprays. http://www.uky.edu/Ag/PAT/recs/livestk/recdairy/daires.htm. Accessed 15 Sept 2015

  • Tran DH, Takagi M, Takasu K (2004) Effects of selective insecticides on host searching and oviposition behavior of Neochrysocharis formosa (Westwood) (Hymenoptera: Eulophidae), a larval parasitoid of the American serpentine leafminer. Appl Entomol Zool 39:435–441

    Article  CAS  Google Scholar 

  • Warkentin TE, Sheppard JI, Moore JC, Sigouin CS, Kelton JG (2008) Quantitative interpretation of optical density measurements using PF4-dependent enzyme-immunoassays. J Thromb Haemost 6:1304–1312

    Article  CAS  PubMed  Google Scholar 

  • White WH, McCoy CM, Meyer JA, Winkle JR, Plummer PR, Kemper CJ, Starkey R, Snyder DE (2007) Knockdown and mortality comparisons among spinosad-, imidacloprid-, and methomyl-containing baits against susceptible Musca domestica (Diptera: Muscidae) under laboratory conditions. J Econ Entomol 100:155–163

    Article  PubMed  Google Scholar 

  • Whitehorn PR, Cook N, Blackburn CV, Gill SM, Green J, Shuker DM (2015) Sex allocation theory reveals a hidden cost of neonicotinoid exposure in a parasitoid wasp. Proc R Soc B 282:20150389

    Article  PubMed  PubMed Central  Google Scholar 

  • Zwicker JI, Uhl L, Huang WY, Shaz BH, Bauer KA (2004) Thrombosis and ELISA optical density values in hospitalized patients with heparin-induced thrombocytopenia. J Thromb Haemost 2:2133–2137

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Hackman, B. Heinsohn, J. Morrow, and T. Bieda for laboratory assistance, J. Miller for use of laboratory space and equipment, and C. von Ende, and N. Barber for feedback on the writing and experimental design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin R. Burgess IV.

Additional information

Handling Editor: Josep Anton Jaques Miret

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burgess, E.R., Kremer, A., Elsawa, S.F. et al. Sublethal effects of imidacloprid exposure on Spalangia endius, a pupal parasitoid of filth flies. BioControl 62, 53–60 (2017). https://doi.org/10.1007/s10526-016-9776-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-016-9776-6

Keywords

Navigation