Skip to main content

Advertisement

Log in

Hypercapnic hypoxia as a potential means to extend life expectancy and improve physiological activity in mice

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

The application of combined hypoxia and hypercapnia (hypercapnic hypoxia) during respiratory exercises results in a maximum increase in resistance to acute hypoxia and ischemic tolerance of the brain. The results of those researches allow the assumption that hypercapnic hypoxia is a promising method for prophylaxis, treatment, and rehabilitation, as well as a means to increase life expectancy. The study was conducted to verify the hypothesis that it is possible to extend the life span through regular courses of respiratory exercises with hypercapnic hypoxia. In the present experimental research carried out on mice, the geroprotective effect of regular hypercapnic-hypoxic exercises (PO2—90 mm Hg and PCO2—50 mm Hg) was assessed in the context of the average life expectancy and the main criteria of its quality (reproductive function, muscle strength, and behavior). Results suggest that with regular training, life span is extended significantly by 16%. This result was accompanied by improved reproductive and cognitive functions, increased motor and search activities, and physical stamina in old age mices. This important phenomenon is accompanied by improved reproductive and cognitive functions, high motor function and search activity, as well as better physical stamina in old-aged mices. Recurring respiratory training under combined hypoxia and hypercapnia (hypercapnic hypoxia) during the lifetime significantly extended the life span of mice in the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agadzhanian NA, Radysh IV, Severin AE, Ermakova NV (1995) Ecology, adaptation and biorhythms. Aviakosm Ekolog Med 29(3):16–19

    CAS  PubMed  Google Scholar 

  • Anisimov VN, Popovich IG, Zabezhinski MA (2007) Methods of evaluating the effect of of pharmacological drugs on aging and life span in mice biological aging: methods and protocols. In: Tollefsbol TO (ed) Methods in molecular biology, vol 371. Humana Press, Totowa, pp 227–236

    Google Scholar 

  • Bespalov AG, Tregub PP, Kulikov VP, Pijanzin AI, Belousov AA (2014) The role of VEGF, HSP-70 and protein S-100B in the potentiation effect of the neuroprotective effect of hypercapnic hypoxia. Patol Fiziol Eksp Ter 2:24–27

    Google Scholar 

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352

    Article  CAS  PubMed  Google Scholar 

  • Boretto JM, Cabezas-Cartes F, Ibargüengoytía NR (2018) Slow life histories in lizards living in the highlands of the Andes Mountains. J Comp = Physiol B 188:491–503

    PubMed  Google Scholar 

  • Bourin M, Hascoët M (2003) The mouse light/dark box test. Eur J Pharmacol 463(1–3):55–65

    Article  CAS  PubMed  Google Scholar 

  • Calabrese V, Scapagnini G, Davinelli S, Koverech G, Koverech A, De Pasquale C, Salinaro AT, Scuto M, Calabrese EJ, Genazzani AR (2014) Sex hormonal regulation and hormesis in aging and longevity: role of vitagenes. J Cell Commun Signal 8(4):369–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WJ, Chen HW, Yu SL (2005) Gene expression profiles in hypoxic preconditioning using cDNA microarray analysis: altered expression of an angiogenic factor, carcinoembryonic antigen-related cell adhesion molecule 1. Shock 24:124–131

    Article  CAS  PubMed  Google Scholar 

  • de Jesus BB, Vera E, Schneeberger K, Tejera AM, Ayuso E, Bosch F, Blasco MA (2012) Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med 4(8):691–704

    Article  CAS  Google Scholar 

  • Fierstra J, Sobczyk O, Battisti-Charbonney J, Mandell DM, Poublanc J, Crawley AP, Mikulis DJ, Duffin J, Fisher JA (2013) Measuring cerebrovascular reactivity: what stimulus to use? J Physiol 591(23):5809–5821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finch CE (2009) Update on slow aging and negligible senescence—a mini-review. Gerontology 55:307–313

    Article  PubMed  Google Scholar 

  • Flurkey K, Currer JM, Harrison DE (2007) The mouse in aging research. In: Fox JG et al (eds) The mouse in biomedical research second III. Academic Press, Cambridge, pp 637–672

    Chapter  Google Scholar 

  • Gould TD, Dao DT, Kovacsics CE (2010) The open field test in mood and anxiety related phenotypes in mice. Neuromethods 42:1–20

    Google Scholar 

  • Gustin SE, Western PS, McClive PJ, Harley VR, Koopman PA, Sinclair AH (2008) Testis development, fertility, and survival in ethanolamine kinase 2-deficient mice. Endocrinology 149(12):6176–6186

    Article  CAS  PubMed  Google Scholar 

  • Hall CS (1936) Emotional behavior in the rat. The relationship between emotionality and ambulatory activity. J Comp Physiol Psychol 22:345–352

    Article  Google Scholar 

  • Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460(7253):392–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helenius IT, Krupinski T, Turnbull DW, Gruenbaum Y, Silverman N, Johnson EA, Sporn PH, Sznajder JI, Beitel GJ (2009) Elevated CO2 suppresses specific Drosophila innate immune responses and resistance to bacterial infection. Proc Natl Acad Sci USA 106(44):18710–18715

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson HF, Broadhurst PL (1982) The effects of parachlorophenylalanine and stimulus intensity on open-field test measures in rats. Neuropharmacology 21(12):1279–1282

    Article  CAS  PubMed  Google Scholar 

  • Jafari M (2015) Healthspan pharmacology. Rejuvenation Res 18(6):573–580

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaitovich A, Angulo M, Lecuona E, Dada LA, Welch LC, Cheng Y, Gusarova G, Ceco E, Liu C, Shigemura M, Barreiro E, Patterson C, Nader GA, Sznajder JI (2015) High CO2 levels cause skeletal muscle atrophy via AMP-activated kinase (AMPK), FoxO3a protein, and muscle-specific Ring finger protein 1 (MuRF1). J Biol Chem 290(14):9183–9194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krivoruchko A, Storey KB (2010) Forever young: mechanisms of natural anoxia tolerance and potential links to longevity. Oxid Med Cell Longev 3(3):186–198

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulikov VP, Bespalov AG, Yakushev NN (2009) The state of cerebral hemodynamics in conditions of prolonged adaptation to hypercapnic hypoxia. Neurosci Behav Physiol 39(3):269–273

    Article  CAS  PubMed  Google Scholar 

  • Kulikov VP, Osipov IS, Tregub PP (2015) Optimal hypercapnic hypoxia conditions for increasing resistance to acute hypoxia. Aviakosm Ekolog Med 49(5):25–28

    CAS  PubMed  Google Scholar 

  • Laffey JG, Tanaka M, Engelberts D, Luo X, Yiang S, Tanswell TK, Post M, Lindsay T, Kavanagh BP (2000) Therapeutic hypercapnia reduces pulmonary and systemic injury following in vivo lung reperfusion. Am J Respir Crit Care Med 162:2287–2294

    Article  CAS  PubMed  Google Scholar 

  • Leak RK, Calabrese EJ, Kozumbo WJ, Gidday JM, Johnson TE, Mitchell JR, Ozaki CK, Wetzker R, Bast A, Belz RG, Bøtker HE, Koch S, Mattson MP, Simon RP, Jirtle RL, Andersen ME (2018) Enhancing and extending biological performance and resilience. Dose Response 16(3):1559325818784501

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin HJ, Wang CT, Niu KC, Gao C, Li Z, Lin MT, Chang CP (2011) Hypobaric hypoxia preconditioning attenuates acute lung injury during high-altitude exposure in rats via up-regulating heat-shock protein 70. Clin Sci (Lond) 121(5):223–231

    Article  CAS  Google Scholar 

  • Lukyanova LD, Germanova EL, Kopaladze RA (2009) Development of resistance of an organism under various conditions of hypoxic preconditioning: role of the hypoxic period and reoxygenation. Bull Exp Biol Med 147:400–404

    Article  CAS  PubMed  Google Scholar 

  • Matsubayashi K, Okumiya K (2012) Field medicine: a new paradigm of geriatric medicine. Geriatr Gerontol Int 12(1):5–15

    Article  PubMed  Google Scholar 

  • Muradian K (2013) “Pull and push back” concepts of longevity and life span extension. Biogerontology 14(6):687–691

    Article  PubMed  Google Scholar 

  • Neckár J, Papousek F, Nováková O, Ost’ádal B, Kolár F (2002) Cardioprotective effects of chronic hypoxia and ischaemic preconditioning are not additive. Basic Res Cardiol 97(2):161–167

    Article  PubMed  Google Scholar 

  • Obrenovitch TP (2008) Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev 88(1):211–247

    Article  CAS  PubMed  Google Scholar 

  • Pruimboom L, Muskiet FAJ (2018) Intermittent living; the use of ancient challenges as a vaccine against the deleterious effects of modern life—a hypothesis. Med Hypotheses 120:28–42

    Article  PubMed  Google Scholar 

  • Serebrovskaya TV, Xi L (2016) Intermittent hypoxia training as non-pharmacologic therapy for cardiovascular diseases: practical analysis on methods and equipment. Exp Biol Med (Maywood) 241(15):1708–1723

    Article  CAS  Google Scholar 

  • Sharabi K, Hurwitz A, Simon AJ, Beitel GJ, Morimoto RI, Rechavi G, Sznajder JI, Gruenbaum Y (2009) Elevated CO2 levels affect development, motility, and fertility and extend life span in Caenorhabditis elegans. Proc Natl Acad Sci USA 106(10):4024–4029

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharp FR, Ran R, Lu A, Tang Y, Strauss KI, Glass T, Ardizzone T, Bernaudin M (2004) Hypoxic preconditioning protects against ischemic brain injury. NeuroRx 1(1):26–35

    Article  PubMed  PubMed Central  Google Scholar 

  • Shatilo VB, Korkushko OV, Ischuk VA, Downey HF, Serebrovskaya TV (2008) Effects of intermittent hypoxia training on exercise performance, hemodynamics, and ventilation in healthy senior men. High Alt Med Biol 9(1):43–52

    Article  PubMed  Google Scholar 

  • Siafakas NM, Jordan M, Wagner H, Breen EC, Benoit H, Wagner PD (2001) Diaphragmatic angiogenic growth factor mRNA responses to increased ventilation caused by hypoxia and hypercapnia. Eur Respir J 17:681–687

    Article  CAS  PubMed  Google Scholar 

  • Tao T, Liu Y, Zhang J, Xu Y, Li W, Zhao M (2013) Therapeutic hypercapnia improves functional recovery and attenuates injury via antiapoptotic mechanisms in a rat focal cerebral ischemia/reperfusion model. Brain Res 1533:52–62

    Article  CAS  PubMed  Google Scholar 

  • Tregub P, Kulikov V, Bespalov A (2013) Tolerance to acute hypoxia maximally increases in case of joint effect of normobaric hypoxia and permissive hypercapnia in rats. Pathophysiology 20(3):165–170

    Article  PubMed  Google Scholar 

  • Tregub P, Kulikov V, Motin Y, Bespalov A, Osipov I (2015) Combined exposure to hypercapnia and hypoxia provides its maximum neuroprotective effect during focal ischemic injury in the brain. J Stroke Cerebrovasc Dis 24(2):381–387

    Article  PubMed  Google Scholar 

  • Van Zutphen LF, Baumans V, Beynen AC (2001) Principles of laboratory animal science. Elsevier, New York

    Google Scholar 

  • Yang CC, Lin LC, Wu MS (2009) Repetitive hypoxic preconditioning attenuates renal ischemia/reperfusion induced oxidative injury via upregulating HIF-1 alpha-dependent bcl-2 signaling. Transplantation 88:1251–1260

    Article  CAS  PubMed  Google Scholar 

  • Zakynthinos S, Katsaounou P, Karatza MH, Roussos C, Vassilakopoulos T (2007) Antioxidants increase the ventilatory response to hyperoxic hypercapnia. Am J Respir Crit Care Med 175(1):62–68

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Cao B, Niu L, Cui X, Yu H, Liu J, Li H, Li W (2010) Effects of permissive hypercapnia on transient global cerebral ischemia–reperfusion injury in rats. Anesthesiology 112:288–297

    Article  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel P. Tregub.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed (EU Directive 2010/63/EU for animal experiments).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikov, V.P., Tregub, P.P., Osipov, I.S. et al. Hypercapnic hypoxia as a potential means to extend life expectancy and improve physiological activity in mice. Biogerontology 20, 677–686 (2019). https://doi.org/10.1007/s10522-019-09821-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-019-09821-6

Keywords

Navigation