Skip to main content
Log in

Dying myofibers in elderly mouse skeletal muscles are characterized by the appearance of dystrophin-encircled vacuoles

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

The age-related loss of skeletal muscle mass and strength (sarcopenia) is predominantly attributed to myofiber atrophy, however the role or existence of myofiber death is currently unclear. We recently discovered dysmorphic myofibers in normal elderly mice resembling those that characterize the Autophagic Vacuolar Myopathies, and speculated that they may be myofibers caught in the act of dying. Since these myofibers were identifiable by Dystrophin Encircled Vacuoles and invaginations with Intracellular Localization we coined the acronym DEVILs and aimed to determine their frequency, pathogenesis and correlation with myofiber loss. In whole transverse sections of young (1–6 month) and elderly (22–26 month) C57Bl/6j mouse muscles, DEVILated myofiber number correlated with myofiber loss, being increasingly prevalent in aged extensor digitorum longus (R = 0.7, p < 0.001) and soleus (R = 0.6, p = 0.004) muscles, whilst rare in myofiber loss resistant muscles (cleido- and sternomastoid). In a cell viability dye-exclusion test, 17 ± 14 % of DEVILated myofibers stained positive and were accompanied by immunoglobulin infiltration compared to 1 ± 1 % of normal myofibers (p = 0.029). Virtually all DEVILs were acid-phosphatase reactive but contained p62 immunoreactivity and periodic acid-Schiff stained plaques. Compared to normal myofibers, BNIP3 immunostaining in DEVILated myofibers was reduced, whilst MAP-LC3b was indifferent. Cleaved-caspase 3 immunoreactivity was marginally elevated in DEVILated myofibers, but unaccompanied by nuclear DNA fragmentation. DEVILated myofibers were also identified in elderly rat (24 month) and cadaveric human (78 years) muscles. We argue that DEVIL formation reflects a previously undescribed fibre death process via a mechanism involving autophagic dysfunction and that the process may represent our first direct insight into the mechanism by which myofibers are lost in old age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ballak SB, Degens H, de Haan A, Jaspers RT (2014) Aging related changes in determinants of muscle force generating capacity: a comparison of muscle aging in men and male rodents. Ageing Res Rev 14:43–55

    Article  PubMed  Google Scholar 

  • Bonaldo P, Sandri M (2013) Cellular and molecular mechanisms of muscle atrophy. Dis Models Mech 6(1):25–39

    Article  CAS  Google Scholar 

  • Borisov AB, Carlson BM (2000) Cell death in denervated skeletal muscle is distinct from classical apoptosis. Anat Rec 258(3):305–318

    Article  CAS  PubMed  Google Scholar 

  • Brack AS, Bildsoe H, Hughes SM (2005) Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age-related muscle atrophy. J Cell Sci 118(20):4813–4821

    Article  CAS  PubMed  Google Scholar 

  • Brown M (1987) Change in fibre size, not number, in ageing skeletal muscle. Age Ageing 16(4):244–248

    Article  CAS  PubMed  Google Scholar 

  • Danon MJ, Oh SJ, DiMauro S, Manaligod JR, Eastwood A, Naidu S, Schliselfeld LH (1981) Lysosomal glycogen storage disease with normal acid maltase. Neurology 31(1):51–57

    Article  CAS  PubMed  Google Scholar 

  • Dirks A, Leeuwenburgh C (2002) Apoptosis in skeletal muscle with aging. Am J Physiol Regul 282(2):R519–R527

    Article  CAS  Google Scholar 

  • Dirks AJ, Leeuwenburgh C (2004) Aging and lifelong calorie restriction result in adaptations of skeletal muscle apoptosis repressor, apoptosis-inducing factor, X-linked inhibitor of apoptosis, caspase-3, and caspase-12. Free Radic Biol Med 36(1):27–39

    Article  CAS  PubMed  Google Scholar 

  • Du J, Wang X, Miereles C, Bailey JL, Debigare R, Zheng B, Price SR, Mitch WE (2004) Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 113(1):115–123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Echeverri K, Clarke JD, Tanaka EM (2001) In vivo imaging indicates muscle fiber dedifferentiation is a major contributor to the regenerating tail blastema. Dev Biol 236(1):151–164

    Article  CAS  PubMed  Google Scholar 

  • Eddinger T, Moss R, Cassens R (1985) Fiber number and type composition in extensor digitorum longus, soleus, and diaphragm muscles with aging in Fisher 344 rats. J Histochem Cytochem 33(10):1033–1041

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Vitale I, Abrams J, Alnemri E, Baehrecke E, Blagosklonny M, Dawson T, Dawson V, El-Deiry W, Fulda S (2011) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19(1):107–120

    Article  PubMed Central  PubMed  Google Scholar 

  • Gundersen K, Bruusgaard JC (2008) Nuclear domains during muscle atrophy: nuclei lost or paradigm lost? J Physiol 586(Pt 11):2675–2681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hooper A (1981) Length, diameter and number of ageing skeletal muscle fibres. Gerontol 27(3):121–126

    Article  CAS  Google Scholar 

  • Ishihara A, Naitoh H, Katsuta S (1987) Effects of ageing on the total number of muscle fibers and motoneurons of the tibialis anterior and soleus muscles in the rat. Brain Res 435(1–2):355–358

    Article  CAS  PubMed  Google Scholar 

  • Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R (2004) The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc 52(1):80–85

    Article  PubMed  Google Scholar 

  • Karnovsky MJ, Roots L (1964) A “direct-coloring” thiocholine method for cholinesterases. J Histochem & Cytochem 12(3):219–221

    Article  CAS  Google Scholar 

  • Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9:1004–1010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Larsson L, Sjodin B, Karlsson J (1978) Histochemical and biochemical changes in human skeletal muscle with age in sedentary males, age 22–65 years. Acta Physiol Scand 103(1):31–39

    Article  CAS  PubMed  Google Scholar 

  • Lexell J, Taylor CC, Sjöström M (1988) What is the cause of the ageing atrophy?: Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci 84(2–3):275–294

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Lee Y, Thompson WJ (2011) Changes in aging mouse neuromuscular junctions are explained by degeneration and regeneration of muscle fiber segments at the synapse. J Neurosci 31(42):14910–14919

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lushaj EB, Johnson JK, McKenzie D, Aiken JM (2008) Sarcopenia accelerates at advanced ages in Fisher 344xBrown Norway rats. J Gerontol 63(9):921–927

    Article  Google Scholar 

  • Malicdan MC, Noguchi S, Nonaka I, Saftig P, Nishino I (2008) Lysosomal myopathies: an excessive build-up in autophagosomes is too much to handle. Neuromuscul Disord 18(7):521–529

    Article  PubMed  Google Scholar 

  • McClearn D, Medville R, Noden D (2005) Muscle cell death during the development of head and neck muscles in the chick embryo. Dev Dyn 202(4):365–377

    Article  Google Scholar 

  • Nemazanyy I, Blaauw B, Paolini C, Caillaud C, Protasi F, Mueller A, Proikas-Cezanne T, Russell RC, Guan K-L, Nishino I, Sandri M, Pende M, Panasyuk G (2013) Defects of Vps15 in skeletal muscles lead to autophagic vacuolar myopathy and lysosomal disease. EMBO Mol Med 5(6):870–890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nilwik R, Snijders T, Leenders M, Groen BB, van Kranenburg J, Verdijk LB, van Loon LJ (2013) The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Exp Gerontol 48(5):492–498

    Article  PubMed  Google Scholar 

  • Nishino I (2006) Autophagic vacuolar myopathy. Semin Pediatri Neurol 13(2):90–95

    Article  Google Scholar 

  • Oxenhandler R, Hart M, Corman L, Sharp G, Adelstein E (1977) Pathology of skeletal muscle in mixed connective tissue disease. Arthr Rheumat 20(4):985–988

    Article  CAS  Google Scholar 

  • Paul AC (2001) Muscle length affects the architecture and pattern of innervation differently in leg muscles of mouse, guinea pig, and rabbit compared to those of human and monkey muscles. Anat Rec 262:301–309

    Article  CAS  PubMed  Google Scholar 

  • Paul AC, Sheard PW, Kaufman SJ, Duxson MJ (2002) Localization of α7 integrins and dystrophin suggests potential for both lateral and longitudinal transmission of tension in large mammalian muscles. Cell Tissue Res 308(2):255–265

    Article  CAS  PubMed  Google Scholar 

  • Phillips T, Leeuwenburgh C (2005) Muscle fiber specific apoptosis and TNF-α signaling in sarcopenia are attenuated by life-long calorie restriction. FASEB J 19(6):668–670

    CAS  PubMed  Google Scholar 

  • Rowan SL, Rygiel K, Purves-Smith FM, Solbak NM, Turnbull DM, Hepple RT (2012) Denervation causes fiber atrophy and myosin heavy chain co-expression in senescent skeletal muscle. PLoS ONE 7(1):e29082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rowe RWD (1969) The effect of senility on skeletal muscles in the mouse. Exp Gerontol 4(2):119–126

    Article  CAS  PubMed  Google Scholar 

  • Sabatelli P, Castagnaro S, Tagliavini F, Chrisam M, Sardone F, Demay L, Richard P, Santi S, Maraldi NM, Merlini L (2014) Aggresome–autophagy involvement in a sarcopenic patient with rigid spine syndrome and a p. C150R mutation in FHL1 gene. Front Aging Neurosci 6:215

    Article  PubMed Central  PubMed  Google Scholar 

  • Sheard PW, Anderson RD (2012) Age-related loss of muscle fibres is highly variable amongst mouse skeletal muscles. Biogerontology 13(2):157–167

    Article  CAS  PubMed  Google Scholar 

  • Sheard PW, Paul A, Duxson MJ (2002) Intramuscular force transmission. Adv Exp Med Biol 508:495–499

    Article  PubMed  Google Scholar 

  • Trachtenberg JT (1998) Fiber apoptosis in developing rat muscles is regulated by activity, neuregulin. Dev Biol 196(2):193–203

    Article  CAS  PubMed  Google Scholar 

  • Tsujimoto Y, Shimizu S (2005) Another way to die: autophagic programmed cell death. Cell Death & Differ 12:1528–1534

    Article  CAS  Google Scholar 

  • Tsuzuki K, Fukatsu R, Takamaru Y, Kimura K, Abe M, Shima K, Fujii N, Takahata N (1994) Immunohistochemical evidence for amyloid β in rat soleus muscle in chloroquine-induced myopathy. Neurosci Lett 182(2):151–154

    Article  CAS  PubMed  Google Scholar 

  • Tsuzuki K, Fukatsu R, Takamaru Y, Yoshida T, Hayashi Y, Sasaki N, Yamaguchi H, Fujii N, Takahata N (1996) 252 Immunohistochemical evidence for Aß40 and Aß42 in rat soleus muscle in chloroquine-induced myopathy. Neurobiol Aging 17(4):S63

    Article  Google Scholar 

  • Wang EY, Gang H, Aviv Y, Dhingra R, Margulets V, Kirshenbaum LA (2013) p53 Mediates autophagy and cell death by a mechanism contingent On Bnip3. Hypertens 62(1):70–77

    Article  CAS  Google Scholar 

  • Wang H, Listrat A, Meunier B, Gueugneau M, Coudy-Gandilhon C, Combaret L, Taillandier D, Polge C, Attaix D, Lethias C (2014) Apoptosis in capillary endothelial cells in ageing skeletal muscle. Aging Cell 13(2):254–262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wheeler SD (1982) Pathology of muscle and motor units. Phys Ther 62(12):1809–1822

    CAS  PubMed  Google Scholar 

  • Wohlgemuth SE, Seo AY, Marzetti E, Lees HA, Leeuwenburgh C (2010) Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise. Exp Gerontol 45(2):138–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Young M, Paul A, Rodda J, Duxson M, Sheard P (2000) Examination of intrafascicular muscle fiber terminations: implications for tension delivery in series-fibered muscles. J Morphol 245(2):130–145

    Article  CAS  PubMed  Google Scholar 

  • Zanoteli E, de Vlekkert DV, Bonten EJ, Hu H, Mann L, Gomero EM, Harris AJ, Ghersi G, d’Azzo A (2010) Muscle degeneration in neuraminidase 1-deficient mice results from infiltration of the muscle fibers by expanded connective tissue. Biochim Biophys Acta 1802(7):659–672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr Jon Cornwall for providing access to human tissue samples. This work was supported by the Department of Physiology at the University of Otago. NL was the grateful recipient of a University of Otago Master’s Scholarship and Postgraduate Publishing Bursary.

Conflict of interest

The authors declare that they have no competing interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Sheard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lal, N., Sheard, P. Dying myofibers in elderly mouse skeletal muscles are characterized by the appearance of dystrophin-encircled vacuoles. Biogerontology 16, 443–459 (2015). https://doi.org/10.1007/s10522-015-9565-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-015-9565-0

Keywords

Navigation