Skip to main content
Log in

Nonlinear finite and discrete element simulations of multi-storey masonry walls

  • S.I. : URM nonlinear modelling - Benchmark project
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

This paper reports the results of different finite and discrete element simulations on a well-known benchmark of an unreinforced plane masonry structure. Namely, the case study concerns a five floor structural wall, located at the interior of a masonry building, situated in “via Martoglio” in the city of Catania (Italy). The numerical simulations aim to investigate the structural response of the wall subjected to seismic actions by means of a non-linear static analyses. The role of reinforced concrete floor beams within URM walls, their influence on the spandrel elements capacity and the approximation that can affect the model, if the concrete beam non linearity is not engaged, are considered. The benchmark is investigated considering three different structural layouts that have been analysed by means of four numerical approaches. The modelling strategies that have been considered are adaptive NURBS kinematic limit analysis, planar discrete macroelements DME, continuum nonlinear FEM methods and a nonlinear FEM micro-modelling. The results are compared in terms of capacity curves and damage mechanism for each structural layout. As a result, pushover curves and damage patterns appear considerably influenced by the concrete floor beams and their mechanical behaviour. All the considered models denote satisfactory agreement in term of strength and collapse mechanisms, some minor differences are observed in terms of global ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Addessi D, Masiani LD, R, (2015) Force-based beam finite element (FE) for the pushover analysis of masonry buildings. Int J Archit Heritage 9(3):231–243

    Article  Google Scholar 

  • Berto L, Saetta A, Scotta R, Vitaliani R (2002) An orthotropic damage model for masonry structures. Int J Numer Meth Eng 55(2):127–157

    Article  Google Scholar 

  • Caddemi S, Caliò I, Cannizzaro F, Pantò B (2013) A new computational strategy for the seismic assessment of infilled frame structures in Civil-Comp Proceedings

  • Caliò I, Pantò B (2014) A macro-element modelling approach of Infilled Frame Structures. Comput Struct 143:91–107

    Article  Google Scholar 

  • Cannizzaro F, Castellazzi G, Grillanda N, Pantò B, Petracca M (2021) Modelling the nonlinear static response of a 2-storey URM benchmark case study: comparison among different modelling strategies using two- and three-dimensional elements. Bull Earthquake Eng. https://doi.org/10.1007/s10518-021-01183-0

    Article  Google Scholar 

  • Castellazzi G, Pantò B, Occhipinti G, Talledo D, Berto L, Camata G (2021) A comparative study on a complex URM building: part II—issues on modelling and seismic analysis through continuum and discrete-macroelement models. Bull Earthquake Eng. https://doi.org/10.1007/s10518-021-01147-4

    Article  Google Scholar 

  • Cattari S, Calderoni B, Calio I, Camata G, de Miranda S, Magenes G, Milani G, Saetta A (2021) Nonlinear modeling of the seismic response of masonry structures: Critical review and open issues towards engineering practice. Submitted to Bulletin of Earthquake Engineering, SI on “URM nonlinear modelling-Benchmark project”

  • Cattari S, Calderoni B, Caliò I, Camata G, de Miranda S, Magenes G, Milani G, Saetta A (2021) Nonlinear modelling of the seismic response of masonry structures: critical aspects in engineering practice,” Submitted to Bulletin of Earthquake Engineering, SI on "URM nonlinear modelling-Benchmark project"

  • Cattari S, Magenes G, Spacone E, Caliò I, Calderoni B, de Miranda S, Saetta A, Milani G, Degli Abbati S, Ottonelli D, Manzini C, Morandi P, Pantò B, Canizzaro F, Occhipinti G, Cordasco A, Castellazzi G, D’Altri A, Berto L, Doria A, Talledo D (2020) “Progetto DPC-ReLUIS 2019–2021 – Uso dei software di calcolo nella verifica sismica degli edifici in muratura 1.0”

  • Cattari S, Magenes G (2021) Benchmarking the software packages to model and assess the seismicresponse of unreinforced masonry existing buildings through nonlinear analyses. Bull Earthquake Eng. https://doi.org/10.1007/s10518-021-01078-0

    Article  Google Scholar 

  • Cervera M, Oliver J, Faria R (1995) Seismic evaluation of concrete dams via continuum damage model. Earthquake Eng Struct Dynam 24(9):1225–1245

    Article  Google Scholar 

  • Chiozzi A, Milani G, Tralli A (2017) A Genetic Algorithm NURBS-based new approach for fast kinematic limit analysis of masonry vaults. Comput Struct 182:187–204

    Article  Google Scholar 

  • Chácara C, Cannizzaro F, Pantò B, Caliò I, Lourenço P (2018) Assessment of the dynamic response of unreinforced masonry structures using a macro-element modeling approach. Earthquake Eng Struct Dynam 47(12):2426–2446

    Google Scholar 

  • D’Altri AM, Messali F, Rots J, Castellazzi G, de Miranda S (2019) A damaging block-based model for the analysis of the cyclic behaviour of full-scale masonry structures. Eng Fract Mech 209:423–448

    Article  Google Scholar 

  • D'Altri AM, de Miranda S (2020) “ Environmentally-induced loss of performance in FRP strengthening systems bonded to full-scale masonry structures.,” Construction and Building Materials, 249.

  • D’Altri A, Cannizzaro F, Petracca M (2021) Talledo D (2021) Nonlinear modelling of the seismic response of masonry structures: Calibration strategies. Bull Earthquake Eng. https://doi.org/10.1007/s10518-021-01104-1

    Article  Google Scholar 

  • Faria R, Oliver J, Cervera M (1998) A strain-based plastic viscous-damage model for massive concrete structures. Int J Solids Struct 35(14):1533–1558

    Article  Google Scholar 

  • Fortunato G, Funari M, Lonetti P (2017) ‘Survey and seismic vulnerability assessment of the Baptistery of San Giovanni in Tumba (Italy). J Cult Herit 26:64–78

    Article  Google Scholar 

  • Grillanda N, Chiozzi A, Milani G, Tralli A (2019) Collapse behavior of masonry domes under seismic loads: an adaptive NURBS kinematic limit analysis approach. Eng Struct 200:10957

    Article  Google Scholar 

  • Grillanda N, Valente M, Milani G (2020) ANUB-Aggregates: a fully automatic NURBS-based software for advanced local failure analyses of historical masonry aggregates. Bull Earthq Eng 18:3935–3961

    Article  Google Scholar 

  • Haupt R, Haupt S (1998) Practical genetic algorithms. Wiley, New York

    Google Scholar 

  • Lee J, Fenves GL (1998) Plastic-Damage Model for Cyclic Loading of Concrete Structures. J Eng Mech 124(8):892–900

    Article  Google Scholar 

  • Liberatore Ed. D (2000) Progetto Catania: indagine sulla risposta sismica di due edifici in muratura,, Roma: CNR-Gruppo Nazionale per la Difesa dai Terremoti, 275

  • Lubliner J, Oliver J, Oller S, Onate E (1989b) A plastic-damage model for concrete. Int J Solids Struct 25(3):299–326

    Article  Google Scholar 

  • Lubliner J, Oliver J, Oller S, Oñate E (1989a) A Plastic-damage model for concrete. Int J Solids Struct 25(3):299–326

    Article  Google Scholar 

  • Menegotto e P. Pinto M (1973) «Method of analysis of cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under normal force and bending.,» Preliminary Report IABSE, 13

  • Milani G, Lourenço PB, Tralli A (2006) Homogenised limit analysis of masonry walls, Part II: Structural examples. Comput Struct 84(3):181–195

    Article  Google Scholar 

  • Milani G, Valente M, Alessandri C (2018) The narthex of the church of the nativity in bethlehem: a non-linear finite element approach to predict the structural damage. Comput Struct 207:3–18

    Article  Google Scholar 

  • Mirmiran A, Shahawy M (1997) Dilation characteristics of confined concrete. Mech Cohesive-Frictional Mater 2(3):237–249

    Article  Google Scholar 

  • NTC18, “NTC Normativa tecnica per le costruzionii - DM 14 Gennaio 2018,” MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI, 2018.

  • Pantò B, I. Caliò e P. Lourenco, (2018) A 3D discrete macro-element for modelling the out-of-plane behaviour of infilled frame structures. Eng Struct 175:371–385

    Article  Google Scholar 

  • Pelà L, Cervera M, Roca P (2013) An orthotropic damage model for the analysis of masonry structures. Constr Build Mater 41:957–967

    Article  Google Scholar 

  • Petracca M, Pelà L, Rossi R, Oller S, Camata G, Spacone E (2016) Regularization of first order computational homogenization for multiscale analysis of masonry structures. Comput Mech 57(2):257–276

    Article  Google Scholar 

  • Petracca M, Pelà L, Rossi R, Oller S, Camata G, Spacone E (2017b) Multiscale computational first order homogenization of thick shells for the analysis of out-of-plane loaded masonry walls. Comput Methods Appl Mech Eng 315:273–301

    Article  Google Scholar 

  • Petracca M, Pelà L, Rossi R, Zaghi S, Camata G, Spacone E (2017a) Micro-scale continuous and discrete numerical models for nonlinear analysis of masonry shear walls. Constr Build Mater 149:296–314

    Article  Google Scholar 

  • Petracca M (2016) Computational multiscale analysis of masonry structures”, Chieti, Italy: Ph.D. Thesis, Università degli Studi G. d’Annunzio di Chieti-Pescara,.

  • Saloustros S, Pelà L, Cervera M (2017) An enhanced finite element macro-model for the realistic simulation of localized cracks in masonry structures: a large-scale application. Int J Archit Heritage 12:1

    Google Scholar 

  • Tiberti S, Grillanda N, Milani G, Mallardo V (2020) A Genetic Algorithm adaptive homogeneous approach for evaluating settlement-induced cracks in masonry walls. Eng Struct 221:1

    Article  Google Scholar 

  • Wu J, Li J, Faria R (2006) An energy release rate-based plastic-damage model for concrete. Int J Solids Struct 43(3):583–612

    Article  Google Scholar 

Download references

Acknowledgements

The study presented in the paper was developed within the research activities carried out in the frame of the 2014-2018 ReLUIS Project (Topic: Masonry Structures; Coord. Proff. Sergio Lagomarsino, Guido Magenes, Claudio Modena, Francesca da Porto) and of the 2019-2021 ReLUIS Project—WP10 "Code contributions relating to existing masonry structures" (Coord. Guido Magenes). The projects are funded by the Italian Department of Civil Protection. Moreover, the Authors acknowledge the whole group of research teams (RT) that participated to this research activity: UniGE RT (University of Genova; Coord. Prof. Serena Cattari; Participants: Stefania Degli Abbati, Daria Ottonelli); UniPV RT (University of Pavia: Coord. Guido Magenes, Participants: Carlo Manzini, Paolo Morandi); UniCH RT (University of Chieti-Pescara; Coord. Prof. Guido Camata, Participants: Corrado Marano); UniCT RT (University of Catania–Coord. Prof. Ivo Caliò; Participants: Francesco Canizzaro, Giuseppe Occhipinti, Bartolomeo Pantò); UniNA RT (University Federico II of Naples– Coord. Prof. Bruno Calderoni; Participants: Emilia Angela Cordasco); UniBO RT (University of Bologna- Coord. Prof. Stefano de Miranda – Participants: Giovanni Castellazzi, Antonio Maria D’Altri); POLIMI RT (Polytechnic of Milan- Coord. Prof. Gabriele Milani); IUAV RT (University of Venice—Coord. Prof. Anna Saetta; Participants: Luisa Berto, Diego Alejandro Talledo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Occhipinti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Occhipinti, G., Caliò, I., D’Altri, A.M. et al. Nonlinear finite and discrete element simulations of multi-storey masonry walls. Bull Earthquake Eng 20, 2219–2244 (2022). https://doi.org/10.1007/s10518-021-01233-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-021-01233-7

Keywords

Navigation