Skip to main content
Log in

Seismic site characterization of the Kastelli (Kissamos) Basin in northwest Crete (Greece): assessments using ambient noise recordings

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

Crete is actively seismic and site response studies are needed for estimating local site conditions subjected to seismic activity. In order to collect basic data, we performed ambient noise recordings to estimate the site response of the surface and near subsurface structure of the small-scale Kastelli Basin in northwest Crete. The spatial horizontal to vertical spectral ratios (HVSR) resonance pattern of the investigated sites in the centre of the Basin consists of either one or two peaks divided into low to high frequency range in different sites as follows: (a) in some sites only one amplified peak at low frequencies (0.6–1.2 Hz), (b) in other sites only one amplified peak at medium frequencies (2.9–8.5 Hz) and (c) in yet other sites two amplified peaks in the low to high frequency range (0.6–15.5 Hz). The investigated sites are amplified in the frequency range 0.6–15.5 Hz, while the amplitude reaches to a factor of 4 in the spectral ratios. The one HVSR amplified peak at low frequencies is related to locally soft or thick Quaternary deposits. Microtremors were measured in the coastal northwest part of the Basin in a well—lithified Cretaceous limestone site characterized by fractures and faults striking predominantly in a sector NNE to NNW. Sites of one amplified peak at medium frequencies are extended from coastal northwest to southwest delineating a structure striking to NNW. The two amplified peaks are attributed to shallow subsurface heterogeneities/irregularities, locally induced by fault zones and to the overlying Quaternary deposits. Spatial HVSR variations in the frequency and HVSR shape delineate four structures striking NNE, NNW and in a sector NW to WNW, crosscutting the dense populated Basin suggesting that microtremors could be a valuable tool for providing a first approximation of fault zone delineation at least for the Kastelli-Kissamos Basin. The Basin is classified into the X soil category of the Greek Seismic Code 2000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ameri G, Oth A, Pilz M, Bindi D, Parolai S, Luzi L, Mucciarelli M, Cultrera G (2011) Separation of source and site effects by generalized inversion technique using the aftershock recordings of the 2009 L’Aquila earthquake. Bull Earthq Eng 9:717–739

    Article  Google Scholar 

  • Angelier J, Lyberis N, Le Pichon X, Barrier E, Huchon P (1982) The tectonic development of the Hellenic arc and the sea of Crete: a synthesis. Tectonophysics 86:159–163

    Article  Google Scholar 

  • Armijo R, Lyon-Caen H, Papanastassiou D (1992) East-west extension and Holocene normal fault scarps in the Hellenic arc. Geology 20:491–494

    Article  Google Scholar 

  • Bard PY (1998) Microtremor measurements: a tool for site effect estimation? In: Proceedings of the second international symposium on the effects of surface geology on seismic motion, vol 3, pp 1251–1279

  • Bard PY, SESAME European research project WP12 (2004) Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations: measurements, processing and interpretations, Deliverable D23.12 European Commission Research General Directorate Project No. EVG1-CT-2000-00026 SESAME

  • Beroya MAA, Aydin A, Tiglao R, Lasala M (2009) Use of microtremor in liquefaction hazard mapping. Eng Geol 107:140–153

    Article  Google Scholar 

  • Bonnefoy-Claudet S, Baize S, Bonilla LF, Berge-Thierry C, Pasten C, Campos J, Volan P, Verdugo R (2008) Site effect evaluation in the basin of Santiago de Chile using ambient noise measurements. Geophys J Int. doi:10.1111/j.1365-246X.2008.04020.x

    Google Scholar 

  • Bour M, Fouissac D, Dominique P, Martin C (1998) On the use of microtremor recordings in seismic microzonation. Soil Dyn Earthq Eng 17:465–474

    Article  Google Scholar 

  • Bindi D, Parolai S, Cara F, Di Giulio G, Ferretti G, Luzi L, Monachesi G, Pacor F, Rovelli A (2009) Site amplifications observed in the Gubbio Basin, Central Italy: hints for lateral propagation effects. Bull Seismol Soc Am 99:741–760. doi:10.1785/0120080238

    Article  Google Scholar 

  • Bindi D, Luzi L, Parolai S, Di Giacomo D, Monachesi G (2011) Site effects observed in alluvial basins: the case of Norcia (Central Italy). Bull Earthq Eng 9:1941–1959. doi:10.1007/s10518-011-9273-3

    Article  Google Scholar 

  • Calderoni G, Rovelli A, Di Giovambattista R (2010) Large amplitude variations recorded by an on fault seismological station during the L’Aquila earthquakes:evidences for a complex fault induced site effect. Geophys Res Lett 37:L24305. doi:10.1029/2010GL045697

    Google Scholar 

  • Caputo R, Monaco C, Tortorici L (2006) Multiseismiccycle deformation rates from Holocene to normal fault scarps on Crete (Greece). Terra Nova 18:181–190. doi:10.1111/j1365-3121.2006.00678.x

    Article  Google Scholar 

  • Caputo R, Catalano S, Monaco C, Romagnoli G, Tortorici G, Tortorici L (2010) Active faulting on the island of Crete(Greece). Geophys J Int 183:111–126

    Article  Google Scholar 

  • Cara F, Di Giulio G, Rovelli A (2003) A study on seismic noise variations at Colfiorito, central Italy: implications for the use of H/ V spectral ratios. Geophys Res Lett 30(18)

  • Chavez-Garcia FJ, Guenca G, Sanchez-Sesma FJ (1995) Site effects in Mexico City urban zone, a complementary study. Soil Dyn Earthq Eng 15:141–146

    Article  Google Scholar 

  • Cornou C, Bard PY, Dietrich M (2003) Contribution of dense array analysis to identification and quantification of basin-edge induced waves, part II: application to the Grenoble basin (French Alps). Bull Seism Soc Am 93:2624–2648

    Article  Google Scholar 

  • Chiauzzi L, Masi A, Mucciarelli M, Vona M, Pacor F, Cultrera G, Gallovic F, Emolo A (2011) Building damage scenarios based on exploitation of Housner Intensity derived from finite faults ground motion simulations. Bull Earthq Eng. doi:10.1007/s10518-011-9309-8

  • Cornier V, Spudich P (1984) Amplification of ground motion and waveform complexity in fault zones: examples from the San Andreas and Calaveras fault zones. Geophys J R Astronom Soc 79:135–152

    Article  Google Scholar 

  • Di Giacomo D, Gallipoli MR, Mucciarelli M, Parolai S, Richwalski S (2005) Analysis and modelling of HVSR in the presence of a velocity inversion. The case of Venosa (Italy). Bull Seism Soc Am 95:2364–2372

  • EAK (2000) Greek code for the Seismic Resistant structures, Organization for Earthquake Resistant Planning and Protection, Ministry of Environment Planning and Public Works, Greece (OASP)

  • Fäh D (1997) Microzonation of the city of Basel. J Seismol 1:87–102

    Article  Google Scholar 

  • Fassoulas C (1999) The structural evolution of central Crete; insights to the tectonic evolution of the South Aegean (Greece). J Geodyn 27:49–70

    Google Scholar 

  • Field EH, Jacob KH (1995) A comparison and test of various site response estimation techniques, including three that are not reference site dependent. Bull Seismol Soc Am 85:1127–1143

    Google Scholar 

  • Field EH, Clement AC, Jacob SM, Aharonian V, Hough SE, Friberg PA, Babaian TO, Karapetian SS, Hovanessian SM, Abramian HA (1995) Earthquake site-response study in Giumri (formely Leninakan), Armenia, using ambient noise observations. Bull Seismol Soc Am 85:349–353

    Google Scholar 

  • Gallipoli MR, Albarello D, Mucciarelli M, Bianca M (2011) Ambient noise measurements to support emergency seismic microzonation: the Abruzzo 2009 experience. Bollettino di Geofisica Teorica ed Applicata 52:539–559. doi:10.4430/bgta0031

    Google Scholar 

  • Giampiccolo E, Gresta S, Mucciarelli M, De Guidi G, Gallipoli MR (2001) Information on subsoil geological structure in the city of Catania (Eastern Sicily) from microtremor measurements. Annali di Geofisica 44:1–11

    Google Scholar 

  • Goded T, Buforn E, Macau A (2012) Site effects evaluation in Málaga city’s historical centre (Southern Spain). Bull Earthq Eng 10:813–838

  • Gosar A (2007) Microtremor HVSR study for assessing site effects in the Bovec basin (NW Slovenia) related to 1998 Mw 5.6 and 2004 Mw 5.2 earthquakes. Eng Geol 91:178–193

    Article  Google Scholar 

  • Gueguen P, Chatelain JL, Guillier B, Yepes H (2000) An indication of the soil topmost layer response in Quito (Ecuador) using noise H/V spectral ratio. Soil Dyn Earthq Eng 19:127–133

    Article  Google Scholar 

  • Gueguen P, Cornou C, Garambois S, Banton J (2007) On the limitation of the H/V spectral ratio using seismic noise as an exploration tool: application to the Grenoble valley (France), a small apex ratio basin. Pure Appl Geophys 164:115–134

    Article  Google Scholar 

  • Hatzfeld D, Besnard M, Makropoulos K, Voulgaris N, Kouskouna V, Hatzidimitriou P, Panagiotopoulos P, Karakaisis G, Deschamps A, Lyon-Caen HO (1993) Subcrustal microearthquake seismicity and fault plane solutions beneath the Hellenic arc. J Geophys Res 98:9861–9870

    Article  Google Scholar 

  • Horike M, Zhao B, Kawase H (2001) Comparison of site response characteristics inferred from microtremor and earthquake shear waves. Bull Seismol Soc Am 91:1526–1536

    Article  Google Scholar 

  • Institute for Geology and Subsurface Research (IGSR) (1970) Geological map of Greece, Kastelli Sheet (Geological survey conducted by Karageorgiou E, 1:50.000 scale)

  • Institute of Geology and Mineral Exploration (IGME) (2002)

  • Jost M, Knabenbauer O, Cheng J, Harjes HP (2002) Fault plane solutions of microearthquakes and small events in the Hellenic Arc. Tectonophysics 356:87–114

    Article  Google Scholar 

  • Keupp H, Bellas SM (2000) Neogene development of the sedimentary basins of NW Crete island, Chania Prefecture, South Aegean Arc System (Greece) Berliner Geowiss. Abh 34:3–117

    Google Scholar 

  • Kilias A, Fassoulas C, Mountrakis D (1994) Tertiary extension of continent crust and uplift of Philoritis metamorphic core complex in the central part of the Hellenic arc (Crete, Greece). Geol Rundsch 83:417–430

    Google Scholar 

  • Konno K, Ohmachi T (1998) Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull Seismol Soc Am 88:228–241

    Google Scholar 

  • Lebrun B, Hatzfeld D, Bard PY (2001) Site effect study in urban area: experimental results in Grenoble (France). Pure Appl Geophys 158:2543–2557

    Article  Google Scholar 

  • Le Pichon X, Angelier J (1979) The hellenic arc and trench system: a key to the neotectonic evolution of the eastern mediterranean area. Tectonophysics 60:1–42

    Article  Google Scholar 

  • Lewis MA, Peng Z, Ben-Zion Y, Vernon FL (2005) Shallow seismic trapping structure in the San Jacinto fault zone near Anza, California. Geophys J Int 162:867–881

    Article  Google Scholar 

  • Lewis MA, Ben-Zion Y, McGuire JJ (2007) Imaging the deep structure of the San Andreas Fault south of Hollister with joint analysis of fault zone head and direct P arrivals. Geophys J Int 169:1028–1042

    Article  Google Scholar 

  • Lombardo G, Rigano R (2006) Amplification of ground motion in fault and fractures zones: observations from the Tremestieri faults MT Etna (Italy). J Vulcan Geotherm Res 153:167–176

    Article  Google Scholar 

  • Marzorati S, Ladina C, Falcucci E, Gori S, Saroli M, Ameri G, Galadini F (2011) Site effects “on the rock”: the case of Castelvecchio Subequo (L’Aquila, central Italy). Bull Earthq Eng 9:841–868. doi:10.1007/s10518-011-9263-5

    Article  Google Scholar 

  • McClusky S, Balassanian S, Barka A, Demir C, Ergintav S, Georgiev I, urkan O, Hamburger M, Hurst K, Kahle H, Kastens K, Kekilidze G, King R, Kotzev V, Lenk O, Mahmoud S, Mishin A, Nadariya M, Ozounis A, Paradissis D, Peter Y, Prelipin M, Reilinger R, Sanli I, Seeger H, Tealeb A, Toksőz MN, Veis G (2000) Global positioning system constraints on plate kinematics andvdynamics in the eastern Mediterranean and Caucasus. J Geophys Res 105:5695–5719

    Article  Google Scholar 

  • McKenzie DP (1972) Active tectonics of the Mediterranean region. Geophys J R Astron Soc 30:109–185

    Article  Google Scholar 

  • McKenzie DP (1978) Active tectonics of the Alpine-Himalayan belt: the Aegean Sea and surrounding regions. Geophys J R Astron Soc 55:217–254

    Article  Google Scholar 

  • Meier T, Becker D, Endrun M, Rische M, Bohnhoff M, Stöckhert B, Harjes HP (2007) A model for the Hellenic subduction zone in the area of Crete based on seismological investigations. Geol Soc Lond Spec Publ 291:183–199

    Article  Google Scholar 

  • Moisidi M (2009) Geological geophysical and seismological investigations for earthquake hazards estimation in western Crete Phd Thesis Dissertation, Brunel University London

  • Moisidi M, Vallianatos F, Soupios P, Kershaw S (2012) Spatial spectral variations of microtremors andination in southwestern Crete, Greece. J Geophys Eng 9:261–270. doi:10.1088/1742-2132/9/3/261

    Article  Google Scholar 

  • Moisidi M, Vallianatos F, Soupios P, Kershaw S, Rust D, Piscitelli S (2013) Modeling tectonic features of the Kissamos and Paleohora areas, Western Crete (Greece): combining geological and geophysical surveys. J Geophys Eng 10:1–17. doi:10.1088/1742-2132/10/2/025015

    Article  Google Scholar 

  • Mucciarelli M (1998) Reliability and applicability range of the Nakamura’s technique using microtremors—an experimental approach. J Earthq Eng 2:625–638

    Google Scholar 

  • Mucciarelli M, Monacheri G (1998) A quick survey of local amplifications and their correlation with damage observed during the Umbro-Marchesan (Italy) earthquake of September 26, 1997. J Earthq Eng 2:325–337

    Google Scholar 

  • Mucciarelli M, Monacheri G, Gallipoli MR (1999) In situ measurements of site effects and building dynamic behaviour related to damage observed during the 9/9/1998 earthquake in Southern Italy. In: Proceedings of the ERES1999 Conference, Catania, Italy, pp 253–265

  • Mucciarelli M, Masi A, Vona M, Gallipoli MR, Harabaglia P, Caputo R, Piscitelli S, Rizzo E, Picozzi M, Albarello D, Lizza C (2003a) Quick survey of the possible causes of damage enhancement observed in San Giuliano after the 2002 Molise, Italy, seismic sequence. J Earthq Eng 7:599–614

    Google Scholar 

  • Mucciarelli M, Gallipoli MR, Arcieri M (2003b) Stability of Horizontal-to-Vertical Spectral Ratio by triggered noise and earthquake recordings. Bull Seismol Soc Am 93:1407–1412

    Article  Google Scholar 

  • Mucciarelli M, Gallipoli M, Di Giacomo D, Di Nota F, Nino E (2005) The influence of wind on measurements of seismic noise. Geophys J Int 161:303–308

    Article  Google Scholar 

  • Mucciarelli M (2011) Ambient noise measurements following the 2011 Christchurch earthquake: relationships with previous microzonation studies, liquefaction, and nonlinearity. Seismol Res Lett 82:919–926

    Article  Google Scholar 

  • Mucciarelli M, Bianca M, Ditommaso R, Vona M, Gallipoli MR, Giocoli A, Piscitelli S, Rizzo E, Picozzi M (2011) Peculiar earthquake damage on a reinforced concrete building in San Gregorio (L’Aquila, Italy): site effects or site defects ? Bull Earthq Eng 9:825–840. doi:10.1007/s10518-011-9257-3

    Article  Google Scholar 

  • Nakamura Y (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Q Rep RTRI 30:25–30

    Google Scholar 

  • Nakamura Y (1996) Real time information systems for seismic hazards mitigation UrEDAS, HERAS and PIC. Q Rep RTRI 37(3):112–127

  • Nakamura Y (2000) Clear identification of fundamental idea of Nakamura’s method for dynamic characteristics estimation of subsurface using microtremor on the ground surface and its applications. In: Proceedings of the 12th world conference on earthquake engineering, Auckland, New Zealand

  • Nogoshi M, Igarashi T (1971) On the amplitude characteristics of microtremor, part 2. J Seismol Soc Japan 24:26–40 (In Japanese with English abstract)

    Google Scholar 

  • Nguyen F, van Rompaey G, Teerlynck H, Van Camp M, Jongmans D, Camelbeeck T (2004) Use of microtremor measurement for assessing site effects in Northern Belgium-interpretation of the observed intensity during the Ms=5.0 June 11, 1938 Earthquake. J Seismol 8:41–56

    Article  Google Scholar 

  • Oros E (2009) Site effects investigation in the city of Timisoara using spectra ratio methods. Rom Rep Phys 61:347–358

    Google Scholar 

  • Özalaybey S, Zor E, Ergintav S, Tapırdamaz C (2011) Investigation of 3-D basin structures in the Izmit Bay area (Turkey) by single-station microtremor and gravimetric methods. Geophys J Int 186:883–894

    Article  Google Scholar 

  • Papazachos BC, Papadimitriou EE, Kiratzi AA, Papazachos CB, Louvari EK (1998) Fault plane solutions in the Aegean Sea and the surrounding area and their tectonic implication. Bolletino di Geofisica Teorica e Applicata 9:199–218

    Google Scholar 

  • Papazachos BC, Karakostas VG, Papazachos CB, Scordilis EM (2000) The geometry of the Wadatti-Benioff zone and lithospheric kinematics in the Hellenic arc. Tectonophys 319:275–300

    Article  Google Scholar 

  • Parolai S, Richwalski SM (2004) The importance of converted waves in comparing H/V and RSM site response estimates. Bull Seism Soc Am 94:304–313

    Article  Google Scholar 

  • Parolai S, Richwalski SM, Milkereit C, Bormann P (2004) Assessment of the stability of H/V spectral ratios from ambient noise and comparison with earthquake data in the Cologne area (Germany). Tectonophysics 390:57–73

    Article  Google Scholar 

  • Pilz M, Parolai S, Leyton F, Campos J, Zschau J (2009) A comparison of site response techniques using earthquake data and ambient seismic noise analysis in the large urban areas of Santiago de Chile. Geophys J Int 178:713–728

    Article  Google Scholar 

  • Pirazzoli PA, Thommeret J, Thommeret Y, Laborel J, Montag-Gioni LF (1982) Crustal block movements from Holocene shorelines: Crete and antikythira (Greece). Tectonophys 86:27–43

    Article  Google Scholar 

  • Puglia R, Ditommaso E, Pacor F, Mucciarelli M, Luzi L, Bianca M (2011) Frequency variation in site response as observed from strong motion data of the L’Aquila (2009) seismic sequence. Bull Earthq Eng 9:869–892

    Article  Google Scholar 

  • Rodriguez HS, Midorikawa S (2002) Applicability of the H/V spectral ratio of microtremors in assessing site effects on seismic motion. Earthq Eng Struct Dyn 31:261–279

    Article  Google Scholar 

  • Roten D, Fäh D, Olsen KB, Giardini D (2008) A comparison of observed and simulated site response in Rhône valley. Geophys J Int 173:958–978

    Article  Google Scholar 

  • Seidel M, Pack A, Sharp ZD (2005) The Kakopetros and Ravdoucha iron- oxide deposits, western Crete, Greece: fluid transport and mineralization within a detachment zone. Econ Geol 100:165–174

    Article  Google Scholar 

  • Seidel M Seidel, Stőckhert B (2007) Tectono-sedimentary evolution of Lower to Middle Miocene half-graben basins related to an extensional detachment fault (western Crete, Greece). Blackwell Publishing, Terra Nova, pp 39–47

    Google Scholar 

  • Stiros SC, Papageorgiou S (2001) Seismicity of Western Crete and the destruction of the town of Kisamos at AD 365: archaeological evidence. J Seismol 5:381–397

    Article  Google Scholar 

  • Strollo A, Parolai S, Bindi D, Chiauzzi L, Pagliuca P, Mucciarelli M, Zschau J (2011) Microzonation of Potenza (Southern Italy) in terms of spectral intensity ratio using joint analysis of earthquakes and ambient noise. Bull Earthq Eng. doi:10.1007/s10518-011-9256-4

  • Taymaz T, Jackson J, Westaway R (1990) Earthquake mechanisms in the Hellenic trench near Crete. Geophys J Int 102:695–731

    Article  Google Scholar 

  • ten Veen JH, Postma G (1999a) Roll-back controlled vertical movements of outer-arc basins of the Hellenic subduction zone (Crete, Greece). Basin Res 11:243–266

    Article  Google Scholar 

  • ten Veen JH, Postma G (1999b) Neogene tectonics and basin fill patterns in the Hellenic outerarc. Basin Res 11:223–241

    Article  Google Scholar 

  • ten Veen JH, Kleinspehn K (2003) Incipient continental collision and plate-boundary curvature: Late Pliocene-Holocene transtensional Hellenic forearc, Crete. Greece J Geol Soc Lond 160:161–181

    Article  Google Scholar 

  • Teves-Costa P, Matias L, Bard PY (1996) Seismic Behaviour estimation of thin alluvium layers using microtremors recordings. Soil Dyn Earthq Eng 15:201–209

    Article  Google Scholar 

  • van Hinsbergen DJJ, Meulenkamp JE (2006) Neogene supradetachment basin development on Crete (Greece) during exhumation of the South Aegean core complex. Basin Res 18:103–124

  • Volant Ph, Orbovica N, Dunandb F (2002) Seismic evaluation of existing nuclear facility using ambient vibration test to characterize dynamic behavior of the structure and microtremor measurements to characterize the soil: a case study. Soil Dyn Earthq Eng 22:1159–1167

    Article  Google Scholar 

  • Waltham T (2002) Foundations of engineering geology, 2nd edn. Spon Press, New York

Download references

Acknowledgments

This work was implemented through the project entitled “Interdisciplinary Multi-Scale Research of Earth-quake Physics and Seismotectonics at the Front of the Hellenic Arc (IMPACT-ARC)” in the framework of action “ARCHIMEDES III—Support of Research Teams at TEI of Crete” (MIS380353) of the Operational Program “Education and Lifelong Learning” and is co-financed by the European Union (European Social Fund) and Greek national funds

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Moisidi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moisidi, M., Vallianatos, F., Kershaw, S. et al. Seismic site characterization of the Kastelli (Kissamos) Basin in northwest Crete (Greece): assessments using ambient noise recordings. Bull Earthquake Eng 13, 725–753 (2015). https://doi.org/10.1007/s10518-014-9647-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-014-9647-4

Keywords

Navigation