Skip to main content
Log in

Suppressive Effect of Chemically Induced Hypoxia on Glioblastoma Cell Proliferation

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Glioblastoma is a tumor characterized by pronounced hypoxia. Hypoxia produces diverse effects on tumor cells, and the results of experimental studies available so far are contradictory. In vitro hypoxia can be modeled in two ways: by reducing the level of atmospheric oxygen (physically induced hypoxia) or by using hypoxia-inducing chemicals such as cobalt chloride (II) (CoCl2) (chemically induced hypoxia). In the present work, we analyzed the effect of CoCl2 on the viability, proliferation, and apoptosis of cells of three glioblastoma cell lines: 1321N1, T98g, and U373 MG. It was shown that CoCl2 induced a dose-dependent decrease in cell viability and proliferation, and at high concentrations (200 and 400 μM) stimulated cell death. CoCl2 had no effect on the cytotoxic activity of doxorubicin in two cell lines T98g and U373 MG, and enhanced the effect of the chemotherapeutic agent on the 1321N1 cell line, though no synergistic cytotoxic effect of the two agents was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harris AL. Hypoxia — a key regulatory factor in tumour growth. Nat. Rev. Cancer. 2002;2(1):38-47. doi: https://doi.org/10.1038/nrc704

    Article  CAS  PubMed  Google Scholar 

  2. Monteiro AR, Hill R, Pilkington GJ, Madureira PA. The role of hypoxia in glioblastoma invasion. Cells. 2017;6(4):45. doi: https://doi.org/10.3390/cells6040045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chédeville AL, Madureira PA. The role of hypoxia in glioblastoma radiotherapy resistance. Cancers (Basel). 2021;13(3):542. doi: https://doi.org/10.3390/cancers13030542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Park JH, Lee HK. Current understanding of hypoxia in glioblastoma multiforme and its response to immunotherapy. Cancers (Basel). 2022;14(5):1176. doi: https://doi.org/10.3390/cancers14051176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Macharia LW, Muriithi W, Heming CP, Nyaga DK, Aran V, Mureithi MW, Ferrer VP, Pane A, Filho PN, Moura-Neto V. The genotypic and phenotypic impact of hypoxia microenvironment on glioblastoma cell lines. BMC Cancer. 2021;21(1):1248. doi: https://doi.org/10.1186/s12885-021-08978-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li P, Zhou C, Xu L, Xiao H. Hypoxia enhances stemness of cancer stem cells in glioblastoma: an in vitro study. Int. J. Med. Sci. 2013;10(4):399-407. doi: https://doi.org/10.7150/ijms.5407

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lee YW, Cherng YG, Yang ST, Liu SH, Chen TL, Chen RM. Hypoxia induced by cobalt chloride triggers autophagic apoptosis of human and mouse drug-resistant glioblastoma cells through targeting the PI3K-AKT-mTOR signaling pathway. Oxid. Med. Cell Longev. 2021;2021:5558618. doi: https://doi.org/10.1155/2021/5558618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheng BC, Chen JT, Yang ST, Chio CC, Liu SH, Chen RM. Cobalt chloride treatment induces autophagic apoptosis in human glioma cells via a p53-dependent pathway. Int. J. Oncol. 2017;50(3):964-974. doi: https://doi.org/10.3892/ijo.2017.3861

    Article  CAS  PubMed  Google Scholar 

  9. Mahey S, Kumar R, Arora R, Mahajan J, Arora S, Bhardwaj R, Thukral AK. Effect of cobalt(II) chloride hexahydrate on some human cancer cell lines. Springerplus. 2016;5(1):930. doi: https://doi.org/10.1186/s40064-016-2405-0

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang B, Guo W, Yu L, Wang F, Xu Y, Liu Y, Huang C. Cobalt chloride inhibits tumor formation in osteosarcoma cells through upregulation of HIF-1α. Oncol. Lett. 2013;5(3):911-916. doi: https://doi.org/10.3892/ol.2013.1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang N, Hong B, Zhou C, Du X, Chen S, Deng X, Duoerkun S, Li Q, Yang Y, Gong K. Cobalt chloride-induced hypoxia induces epithelial-mesenchymal transition in renal carcinoma cell lines. Ann. Clin. Lab. Sci. 2017;47(1):40-46.

    CAS  PubMed  Google Scholar 

  12. Kholodenko IV, Kim YaS, Gisina AM, Lupatov AYu, Kholodenko RV, Yarygin KN. Analysis of the correlation between CD133 expression on human colorectal adenocarcinoma cells HT-29 and their resistance to chemotherapeutic drugs. Bull. Exp. Biol. Med. 2021;171(1):156-163. doi: https://doi.org/10.1007/s10517-021-05188-2

  13. Kholodenko R, Kholodenko I, Sorokin V, Tolmazova A, Sazonova O, Buzdin A. Anti-apoptotic effect of retinoic acid on retinal progenitor cells mediated by a protein kinase A-dependent mechanism. Cell Res. 2007;17(2):151-162. doi: https://doi.org/10.1038/sj.cr.7310147

    Article  CAS  PubMed  Google Scholar 

  14. Kholodenko IV, Gisina AM, Manukyan GV, Majouga AG, Svirshchevskaya EV, Kholodenko RV, Yarygin KN. Resistance of human liver mesenchymal stem cells to FAS-induced cell death. Curr. Issues Mol. Biol. 2022;44(8):3428-3443. doi: https://doi.org/10.3390/cimb44080236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang SJ, Pyen J, Lee I, Lee H, Kim Y, Kim T. Cobalt chloride-induced apoptosis and extracellular signal-regulated protein kinase 1/2 activation in rat C6 glioma cells. J. Biochem. Mol. Biol. 2004;37(4):480-486. doi: https://doi.org/10.5483/bmbrep.2004.37.4.480

    Article  CAS  PubMed  Google Scholar 

  16. Matsumoto T, Chino H, Akiya M, Hashimura M, Yokoi A, Tochimoto M, Nakagawa M, Jiang Z, Saegusa M. Requirements of LEFTY and Nodal overexpression for tumor cell survival under hypoxia in glioblastoma. Mol. Carcinog. 2020;59(12):1409-1419. doi: https://doi.org/10.1002/mc.23265

    Article  CAS  PubMed  Google Scholar 

  17. Grochans S, Korbecki J, Simińska D, Żwierełło W, Rzeszotek S, Kolasa A, Kojder K, Tarnowski M, Chlubek D, Baranowska-Bosiacka I. CCL18 expression is higher in a glioblastoma multiforme tumor than in the peritumoral area and causes the migration of tumor cells sensitized by hypoxia. Int. J. Mol. Sci. 2022;23(15):8536. doi: https://doi.org/10.3390/ijms23158536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mikeladze MA, Dutysheva EA, Kartsev VG, Margulis BA, Guzhova IV, Lazarev VF. Disruption of the complex between GAPDH and Hsp70 sensitizes C6 glioblastoma cells to hypoxic stress. Int. J. Mol. Sci. 2021;22(4):1520. doi: https://doi.org/10.3390/ijms22041520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kholodenko.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 2, pp. 77-82, June, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kholodenko, I.V., Yarygin, K.N. Suppressive Effect of Chemically Induced Hypoxia on Glioblastoma Cell Proliferation. Bull Exp Biol Med 175, 530–534 (2023). https://doi.org/10.1007/s10517-023-05900-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-023-05900-4

Keywords

Navigation