Skip to main content
Log in

Ultradian Near 2-4-h Rhythms of Body Temperature in Laboratory Rodents Depend on External Environmental Heliogeophysical Factor Reflected by Neutron Monitor Count Rate

  • ECOLOGY
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The study collated oscillations of body temperature of С57BL/6 mice and Roborovski hamsters (Phodopus roborovskii) in the period range of 100-240 min and fluctuations of the secondary cosmic rays reflected by neutron count rate of a neutron monitor at the Earth’s surface. Cross-correlation of body temperature and neutron count rate data revealed their strong association only for simultaneous measurements. Collation of the phase of neutron count rate fluctuations with maxima of body temperature oscillations revealed the coincidence of the phases of both processes. There was a temporary connection between the periods of body temperature elevation and neutron count rate rise. Thus, not only the spectral parameters of biological and physical processes, but also their phases coincided, which corroborates the hypothesis on stimulating effect of increasing neutron count rate on activity of the animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anisimov SV, Shikhova NM, Dmitriev EM, Mareev EA. Mechanisms for the formation of electric-field pulsation spectra in the near-surface atmosphere. Radiophysics Quantum Electronics. 2001;44(7):520-532. doi: https://doi.org/10.1023/A:1017905732496

    Article  Google Scholar 

  2. Deshcherevskii AV, Sidorin AYa, Kharin EP. Influence of heliogeophysical factors on animal activity under laboratory conditions. Dokl. Biol. Sci. 2005;401(1-6):139-143. doi: https://doi.org/10.1007/s10630-005-0067-0

    Article  CAS  PubMed  Google Scholar 

  3. Diatroptova MA, Diatroptov ME. Amplitude of One-Minute Fluctuations of Secondary Cosmic Rays as a Marker of Environmental Factor Determining Ultradian Rhythms in Body Temperature of Laboratory Rats. Bull. Exp. Biol. Med. 2021;172(1):105-110. doi: https://doi.org/10.1007/s10517-021-05341-x

    Article  CAS  PubMed  Google Scholar 

  4. Diatroptov ME, Diatroptova MA. Association of Infradian Rhythms of Motor Activity, Concentration of Glucocorticoid Hormones, and One-Minute-Step Oscillations of Body Temperature with Intensity of Fluctuations of Secondary Cosmic Rays. Bull. Exp. Biol. Med. 2022;172(5):592-597. doi: https://doi.org/10.1007/s10517-022-05443-0

    Article  CAS  PubMed  Google Scholar 

  5. Diatroptov ME, Slesarev SM, Zenchenko TA. Phase Analysis of Ultradian Rhythms of Body Temperature in Laboratory Mice Maintained under Constant Illumination at Different Longitudinal Locations. Bull. Exp. Biol. Med. 2021;172(1):72-76. doi: https://doi.org/10.1007/s10517-021-05334-w

    Article  CAS  PubMed  Google Scholar 

  6. Martynyuk VS, Vladimirskii BM, Temur’yants NA. Biological rhythms and environmental electromagnetic fields. Geofiz. Protsessy Biosfera. 2006;5(1):5-23. Russian.

    Google Scholar 

  7. Blessing W, Ootsuka Y. Timing of activities of daily life is jaggy: How episodic ultradian changes in body and brain temperature are integrated into this process. Temperature (Austin). 2016;3(3):371-383. doi: https://doi.org/10.1080/23328940.2016.1177159

    Article  PubMed  PubMed Central  Google Scholar 

  8. Blum ID, Zhu L, Moquin L, Kokoeva MV, Gratton A, Giros B, Storch KF. A highly tunable dopaminergic oscillator generates ultradian rhythms of behavioral arousal. Elife. 2014;3:e05105. doi: https://doi.org/10.7554/eLife.05105.

    Article  PubMed Central  Google Scholar 

  9. Bourguignon C, Storch KF. Control of rest:activity by a dopaminergic ultradian oscillator and the circadian clock. Front. Neurol. 2017;8:614. doi: https://doi.org/10.3389/fneur.2017.00614

    Article  PubMed  PubMed Central  Google Scholar 

  10. Goh GH, Maloney SK, Mark PJ, Blache D. Episodic ultradian events-ultradian rhythms. Biology (Basel). 2019;8(1):15. doi: https://doi.org/10.3390/biology8010015

    Article  CAS  PubMed Central  Google Scholar 

  11. Grant AD, Newman M, Kriegsfeld LJ. Ultradian rhythms in heart rate variability and distal body temperature anticipate onset of the luteinizing hormone surge. Sci. Rep. 2020;10(1):20378. doi: https://doi.org/10.1038/s41598-020-76236-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Honma KI, Hiroshige T. Endogenous ultradian rhythms in rats exposed to prolonged continuous light. Am. J. Physiol. 1978;235(5):R250-R256. doi: https://doi.org/10.1152/ajpregu.1978.235.5.R250

    Article  CAS  PubMed  Google Scholar 

  13. Kozlov VI, Kozlov VV. Galactic cosmic ray fluctuation parameter as an indicator of the degree of magnetic field inhomogeneity. Geomagnet. Aeronomy. 2011;51(2):187-197. doi: https://doi.org/10.1134/S0016793211010075

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Diatroptov.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 173, No. 1, pp. 108-114, January, 2022

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diatroptov, M.E., Diatroptova, M.A. & Surov, A.V. Ultradian Near 2-4-h Rhythms of Body Temperature in Laboratory Rodents Depend on External Environmental Heliogeophysical Factor Reflected by Neutron Monitor Count Rate. Bull Exp Biol Med 173, 92–97 (2022). https://doi.org/10.1007/s10517-022-05500-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-022-05500-8

Key Words

Navigation