Skip to main content
Log in

Depolarization of the Atrial Subepicardium in Rats with Experimentally Induced Pulmonary Hypertension

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Using an experimental model of pulmonary hypertension in rats (monocrotaline in a dose of 60 mg/kg), we revealed an additional focus of early excitation in the zone where the pulmonary veins enter the left atrium, in addition to the main focus in the sinoatrial node. Pulmonary hypertension leads to the formation of regions of early activation in the right and left atria and a significant change in the sequence of atrial depolarization. Propagation of independent excitation waves in the right and left atria increases heterogeneity of depolarization and leads to the formation of atrial arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roshchevsky MP, Arteeva NV, Kolomeets NL, Antonova NA, Kambalov MYu, Shmakov DN, Roshchevskaya IM. The system “Cardioinform” for visualization and analysis of the heart electric field. Med. Akad. Zh. 2005;5(3):74-79. Russian.

    Google Scholar 

  2. Sadykova DI. Modern approaches to diagnostic and treatment of pulmonary hypertension. Prakt. Med. 2012;(7-1):21-26. Russian.

  3. Chazova IE, Martynyuk TV, Nakonechnikov SN. National clinical guideline on diagnosis and treatment of pulmonary hyprtension. Evraz. Kardiol. Zh. 2014;(4):4-24. Russian.

    Article  Google Scholar 

  4. Yurasova ES, Sakhnova TA, Chazova IE, Tsareva NA, Avdeev SN, At’kov OYu. Corrected orthogonal vectorcardiography in pulmonary hypertension diagnostics. Kardiovaskular. Ter. Prof. 2005;4(6-1):38-44. Russian.

    Google Scholar 

  5. Bandorski D, Bogossian H, Ecke A, Wiedenroth C, Gruenig E, Benjamin N, Arlt M, Seeger W, Mayer E, Ghofrani A, Hoeltgen R, Gall H. Evaluation of the prognostic value of electrocardiography parameters and heart rhythm in patients with pulmonary hypertension. Cardiol. J. 2016;23(4):465-472.

    Article  Google Scholar 

  6. Fauchier L, Babuty D, Melin A, Bonnet P, Cosnay P, Paul Fauchier J. Heart rate variability in severe right or left heart failure: the role of pulmonary hypertension and resistances. Eur. J. Heart Fail. 2004;6(2):181-185.

    Article  Google Scholar 

  7. Genovesi S, Fabbrini P, Pieruzzi F, Galbiati E, Sironi E, Pogliani D, Bonforte G, Viganò MR, Stella A. Atrial fibrillation in end stage renal disease patients: Influence of hemodialysis on P wave duration and atrial dimension. J. Nephrol. 2015;28(5):615-621.

    Article  CAS  Google Scholar 

  8. Hiram R, Naud P, Xiong F, Al-U’datt D, Algalarrondo V, Sirois MG, Tanguay JF, Tardif JC, Nattel S. Right atrial mechanisms of atrial fibrillation in a rat model of right heart disease. J. Am. Coll. Cardiol. 2019;74(10):1332-1347.

    Article  CAS  Google Scholar 

  9. Jaïs P, Haïssaguerre M, Shah DC, Chouairi S, Gencel L, Hocini M, Clémenty J. A focal source of atrial fibrillation treated by discrete radiofrequency ablation. Circulation. 1997;95(3):572-576.

    Article  Google Scholar 

  10. Kolettis T, Vlahos AP, Louka M, Hatzistergos KE, Baltogiannis GG, Agelaki MM, Mitsi A, Malamou-Mitsi V. Characterisation of a rat model of pulmonary arterial hypertension. Hellenic J. Cardiol. 2007;48(4):206-210.

    PubMed  Google Scholar 

  11. Koyama T, Ono K, Watanabe H, Ohba T, Murakami M, Iino K, Ito H. Molecular and electrical remodeling of L- and T-type Ca(2+) channels in rat right atrium with monocrotaline-induced pulmonary hypertension. Circ. J. 2009;73(2):256-263.

    Article  CAS  Google Scholar 

  12. Medi C, Kalman JM, Ling LH, Teh AW, Lee G, Lee G, Spence SJ, Kaye DM, Kistler PM. Atrial electrical and structural remodeling associated with longstanding pulmonary hypertension and right ventricular hypertrophy in humans. J. Cardiovasc. Electrophysiol. 2012;23(6):614-620.

    Article  Google Scholar 

  13. Morimatsu Y, Sakashita N, Komohara Y, Ohnishi K, Masuda H, Dahan D, Takeya M, Guibert C, Marthan R. Development and characterization of an animal model of severe pulmonary arterial hypertension. J. Vasc. Res. 2012;49(1):33-42.

    Article  CAS  Google Scholar 

  14. Nogueira-Ferreira R, Vitorino R, Ferreira R, Henriques-Coelho T. Exploring the monocrotaline animal model for the study of pulmonary arterial hypertension: A network approach. Pulm. Pharmacol. Ther. 2015;35:8-16.

    Article  CAS  Google Scholar 

  15. Smirnova S, Ivanova L, Markel A, Roshchevskaya I, Roshchevsky M. Comparison of propagation of atrial excitation with the cardiopotential distribution on the body surface of hypertensive rats. Anadolu Kardiyol. Derg. 2012;12(3):195-199.1 mV

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Smirnova.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 170, No. 12, pp. 725-728, December, 2020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, S.L., Roshchevskaya, I.M. Depolarization of the Atrial Subepicardium in Rats with Experimentally Induced Pulmonary Hypertension. Bull Exp Biol Med 170, 741–743 (2021). https://doi.org/10.1007/s10517-021-05145-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-021-05145-z

Key Words

Navigation