Skip to main content

Advertisement

Log in

Endothelialization of Polycaprolactone Vascular Graft under the Action of Locally Applied Vascular Endothelial Growth Factor

  • BIOTECHNOLOGY
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We have previously developed a polycaprolactone (PCL) vascular graft with incorporated vascular endothelial growth factor (VEGF). Functioning of the PCL/VEGF graft in rat circulatory system over 1, 3 and 6 months after implantation into abdominal aorta was tested. Graft patency and formation of vascular wall elements were assessed histologically and by immunofluorescence staining for von Willebrand factor, CD31, CD34, and collagens I and IV and DAPI staining. Local application of VEGF promoted endothelialization and improved patency of the graft. The wall of the PCL/VEGF graft underwent remodeling due to active cellular infiltration and the extracellular matrix deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sevostyanova VV, Vasukov GU, Borisov VV, Burago AU, Formokidova UN, Golovkin AS. Polycaprolactone scaffolds containing VEGF for angiogenesis stimulation. Kompleks. Problemy Serd.-Sosud. Zabol. 2013;(4):28-34. Russian.

  2. Sevostyanova VV, Golovkin AS, Antonova LV, Glushkova TV, Barbarash OL, Barbarash LS. Modification of polycaprolactone scaffolds with vascular endothelial growth factors for potential application in development of tissue engineered vascular grafts. Geny Kletki. 2015;10(1):91-97. Russian.

  3. Bondar B, Fuchs S, Motta A, Migliaresi C, Kirkpatrick CJ. Functionality of endothelial cells on silk fibroin nets: comparative study of micro- and nanometric fibre size. Biomaterials. 2008;29(5):561-572.

    Article  PubMed  CAS  Google Scholar 

  4. Chen X, Wang J, An Q, Li D, Liu P, Zhu W, Mo X. Electrospun poly(L-lactic acid-co-ε-caprolactone) fibers loaded with heparin and vascular endothelial growth factor to improve blood compatibility and endothelial progenitor cell proliferation. Colloids Surf. B Biointerfaces. 2015;128:106-114.

    Article  PubMed  CAS  Google Scholar 

  5. De Visscher G, Mesure L, Meuris B, Ivanova A, Flameng W. Improved endothelialization and reduced thrombosis by coating a synthetic vascular graft with fibronectin and stem cell homing factor SDF-1α. Acta Biomater. 2012;8(3):1330-1338.

    Article  PubMed  CAS  Google Scholar 

  6. Ingavle GC, Leach JK. Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering. Tissue Eng. Part B Rev. 2014;20(4):277-293.

    Article  PubMed  CAS  Google Scholar 

  7. Ji W, Sun Y, Yang F, van den Beucken JJ, Fan M, Chen Z, Jansen JA. Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharm. Res. 2011;28(6):1259-1272.

    Article  PubMed  CAS  Google Scholar 

  8. Kurobe H, Maxfield MW, Breuer CK, Shinoka T. Concise review: tissue engineered vascular grafts for cardiac surgery: past, present, and future. Stem Cells Transl. Med. 2012; 1(7): 566-571.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Li S, Sengupta D, Chien S. Vascular tissue engineering: from in vitro to in situ. Wiley Interdiscip. Rev. Syst. Biol. Med. 2014;6(1):61-76.

    Article  PubMed  CAS  Google Scholar 

  10. Melchiorri AJ, Hibino N, Fisher JP. Strategies and techniques to enhance the in situ endothelialization of small-diameter biodegradable polymeric vascular grafts. Tissue Eng. Part B Rev. 2013;19(4):292-307.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Osidak MS, Osidak EO, Akhmanova MA, Domogatsky SP, Domogatskaya AS. Fibrillar, fibril-associated and basement membrane collagens of the arterial wall: architecture, elasticity and remodeling under stress. Curr. Pharm. Des. 2015; 21(9):1124-1133.

    Article  PubMed  CAS  Google Scholar 

  12. Sevostyanova VV, Khodyrevskaya YI, Glushkova TV, Antonova LV, Kudryavtseva YA, Barbarash OL, Barbarash LS. Preparation and features of polycaprolactone vascular grafts with incorporated vascular endothelial growth factor. AIP Conference Proceedings. 2015;1683(1):020205-020205.5. https://doi.org/10.1063/1.4932895.

    Google Scholar 

  13. Spano F, Quarta A, Martelli C, Ottobrini L, Rossi RM, Gigli G, Blasi L. Fibrous scaffolds fabricated by emulsion electrospinning: from hosting capacity to in vivo biocompatibility. Nanoscale. 2016;8(17):9293-9303.

    Article  PubMed  CAS  Google Scholar 

  14. Swartz DD, Andreadis ST. Animal models for vascular tissue-engineering. Curr. Opin. Biotechnol. 2013;24(5):916-925.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Unger RE, Krump-Konvalinkova V, Peters K, Kirkpatrick CJ. In vitro expression of the endothelial phenotype: comparative study of primry isolated cells and cell lines, including the novel cell line HPMEC-ST1.6R. Microvasc. Res. 2002;64(3):384-397.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Sevostyanova.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 165, No. 2, pp. 229-234, February, 2018

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevostyanova, V.V., Antonova, L.V., Velikanova, E.A. et al. Endothelialization of Polycaprolactone Vascular Graft under the Action of Locally Applied Vascular Endothelial Growth Factor. Bull Exp Biol Med 165, 264–268 (2018). https://doi.org/10.1007/s10517-018-4144-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-018-4144-4

Key words

Navigation