Skip to main content
Log in

Anxiolytic Properties of Trimetazidine in Experimental Models of Increased Anxiety

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Effect of trimetazidine (20 and 30 mg/kg) on elevated plus maze behavior of rodents was assessed in the genetic and pharmacological anxiety models. Single intraperitoneal injection of trimetazidine in a dose of 20 mg/kg prevented anxiety development in highly emotional male BALB/c mice and increased the time spent in open arms of the maze. In outbred male rats receiving 10% ethanol solution for 20 weeks, trimetazidine administered intraperitoneally in a dose of 20 mg/kg for 28 days abolished ethanol withdrawal-induced anxiogenesis developed against the background of 4-week alcohol deprivation: it increased the time spent in open arms, the number of entries into open arms, and total locomotor activity in the maze. Anxiolytic properties of trimetazidine were not inferior to those of the non-benzodiazepine anxiolytic Afobazole (fabomotizole) in acute and chronic administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kolik LG, Nadorova AV, Kozlovskaya MM. Efficacy of peptide anxiolytic selank during modeling of withdrawal syndrome in rats with stable alcoholic motivation. Bull. Exp. Biol. Med. 2014;157(1):52-55.

    Article  CAS  PubMed  Google Scholar 

  2. Kryzhanovskii SA, Stolyaruk VN, Vititnova MB, Tsorin IB, Seredenin SB. Pleiotropic (cardiotropic) effects of anxiolytic Afobazole (rewiew of experimental studies). Terapevt. 2012;(1):32-40. Russian.

  3. Bertolucci-D’Angio M, Serrano A, Scatton B. Mesocorticolimbic dopaminergic systems and emotional states. J. Neurosci. Methods. 1990;34(1-3):135-142.

    Article  PubMed  Google Scholar 

  4. Brücke T, Wöber C, Podreka I, Wöber-Bingöl C, Asenbaum S, Aull S, Wenger S, Ilieva D, Harasko van der Meer C, Wessely P, Deecke L. D2 receptor blockade by flunarizine and cinnarizine explains extrapyramidal side effects. A SPECT study. J. Cerebr. Blood Flow Metab. 1995;15(3):513-518.

    Article  Google Scholar 

  5. Erbaş O, Akseki HS, Eliküçük B, Taşkıran D. Antipsychoticlike effect of trimetazidine in a rodent model. Scientifi c World J. 2013. ID 686304.

  6. Huang MC, Chen CC, Peng FC, Tang SH, Chen CH. The correlation between early alcohol withdrawal severity and oxidative stress in patients with alcohol dependence. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2009;33(1):66-69.

    Article  CAS  PubMed  Google Scholar 

  7. Joshi D, Naidu PS, Singh A, Kulkarni SK. Protective effect of quercetin on alcohol abstinence-induced anxiety and convulsions. J. Med. Food. 2005;8(3):392-396.

    Article  CAS  PubMed  Google Scholar 

  8. Kumar A, Kaur G, Kalonia H, Rinwa P. Evaluation of sesamol and buspirone in stress induced anxiety in mice. Indian J. Pharmacol. 2013;45(1):49-53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lopatin YM, Rosano GM, Fragasso G, Lopaschuk GD, Seferovic PM, Gowdak LH, Vinereanu D, Hamid MA, Jourdain P, Ponikowski P. Rationale and benefi ts of trimetazidine by acting on cardiac metabolism in heart failure. Int. J. Cardiol. 2016;203:909-915.

    Article  PubMed  Google Scholar 

  10. Masmoudi K, Masson H, Gras V, Andréjak M. Extrapyramidal adverse drug reactions associated with trimetazidine: a series of 21 cases. Fundam. Clin. Pharmacol. 2012;26(2):198-203.

    Article  CAS  PubMed  Google Scholar 

  11. Nakhaee A, Shahabizadeh F, Erfani M. Protein and lipid oxidative damage in healthy students during and after exam stress. Physiol. Behav. 2013;118:118-121.

    Article  CAS  PubMed  Google Scholar 

  12. Pavlova IV, Rysakova MP, Sergeeva MI. Influence of D1, D2 receptor blockade in basolateral amygdala on behavior of rats with high or low levels of anxiety and fear. Zh. Vyssh. Nerv. Deiat. Im. I. P. Pavlova. 2015;65(4):471-485.

    CAS  PubMed  Google Scholar 

  13. Piri M, Ayazi E, Zarrindast MP. Involvement of the dorsal hippocampal dopamine D2 receptors in histamine-induced anxiogenic-like effects in mice. Neurosci. Lett. 2013;550:139-144.

    Article  CAS  PubMed  Google Scholar 

  14. Wu Q, Qi Y, Liu Y, Cheng B, Liu L, Li Y, Wang Q. Mechanisms underlying protective effects of trimetazidine on endothelial progenitor cells biological functions against H2O2-induced injury: involvement of antioxidation and Akt/eNOS signaling pathways. Eur. J. Pharmacol. 2013;707(1-3):87-94.

    Article  CAS  PubMed  Google Scholar 

  15. Zhao Y, Weiss F, Zorrilla EP. Remission and resurgence of anxiety-like behavior across protracted withdrawal stages in ethanol-dependent rats. Alcohol Clin. Exp. Res. 2007;31(9):1505-1015.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Kolik.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 162, No. 11, pp. 593-597, November, 2016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolik, L.G., Nadorova, A.V., Stolyaruk, V.N. et al. Anxiolytic Properties of Trimetazidine in Experimental Models of Increased Anxiety. Bull Exp Biol Med 162, 643–646 (2017). https://doi.org/10.1007/s10517-017-3677-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-017-3677-2

Key Words

Navigation