Skip to main content
Log in

Role of Adenohypophysotropic Neurohormones in Endocrine Paraadenohypophysial Regulation of Peripheral Target Organs in Rat Ontogeny

  • PHYSIOLOGY
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We tested the hypothesis that brain-derived chemical stimuli contribute to direct endocrine regulation of peripheral organs during ontogeny before blood-brain barrier closure. Dopamine and gonadotropin-releasing hormone present in high concentration in peripheral blood only before blood-brain barrier closure were chosen as the chemical stimuli. It was shown than dopamine in concentrations equal to its level in the peripheral blood inhibits prolactin secretion in organotypic culture of the pituitary gland from newborn rats via specific receptors. Experiments on organotypic culture of neonatal rat testicles showed that gonadotropin-releasing hormone stimulates testosterone secretion via specific receptors. We proved that chemical stimuli entering common circulation from the brain before blood-brain barrier closure could exert direct endocrine effect on peripheral organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Lavrent’eva, V. I. Mel’nikova, A. Ya. Sapronova, et al., Ros. Fiziol. Zh., 92, No. 8, 975-983 (2006).

  2. Yu. Yu. Saifetyarova, A. Ya. Sapronova, and M. V. Ugrumov, Dokl. Akad. Nauk, 443, No. 6, 1-4 (2012).

  3. M. V. Ugrumov, Mechanisms of Neuroendocrine Regulation, Moscow (1999).

  4. N. A. Borisova, A. Y. Sapronova, E. V. Proshlyakova, and M. V. Ugrumov, Neuroscience, 43, No. 1, 223-229 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. P. Y. Cheung and K. J. Barrington, Cardiovasc. Res., 31, No. 1, 2-6 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. M. Fukushima, J. Villar, C. H. Tsai-Morris, and M. L. Dufau, J. Biol. Chem., 286, No. 34, 29 932-29 940 (2011).

  7. R. M. Kostrzewa, Neurotox Res., 11, Nos. 3-4, 261-271 (2007).

  8. J. M. Lauder, Trends Neurosci., 16, No. 6, 233-240 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. P. R. Manna, M. T. Dyson, and D. M. Stocco, Mol. Hum. Reprod., 15, No. 6, 321-333 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. V. I. Melnikova, M. Orosco, C. Rouch, et al., Eur. J. Endocrinol., 139, No. 3, 337-342 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. M. V. Ugrumov, Int. Rev. Cytol., 129, 207-267 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. M. V. Ugrumov, Neurochem. Res., 35, No. 6, 837-850 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. M. V. Ugrumov, A. P. Popov, S. V. Vladimirov, et al., Neuroscience, 58, No. 1, 151-160 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. M. V. Ugrumov, A. Y. Sapronova, V. I. Melnikova, et al., Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 141, No. 3, 271-279 (2005).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Bondarenko.

Additional information

Translated from ByulletenEksperimentalnoi Biologii i Meditsiny, Vol. 159, No. 3, pp. 268-272, March, 2015

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondarenko, N.S., Zubova, Y.O., Sapronova, A.Y. et al. Role of Adenohypophysotropic Neurohormones in Endocrine Paraadenohypophysial Regulation of Peripheral Target Organs in Rat Ontogeny. Bull Exp Biol Med 159, 293–296 (2015). https://doi.org/10.1007/s10517-015-2945-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-015-2945-2

Key Words

Navigation