Skip to main content

Advertisement

Log in

Fibrogenesis in Granulomas and Lung Interstitium in Tuberculous Inflammation in Mice

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The study in mouse model of BCG-induced granulomatous inflammation showed that early pulmonary fibrosis (day 3-30 postinfection) in tuberculous inflammation was primarily determined by increased number of fibroblasts in the lung interstitium and granulomas and enhanced fibroplastic activity. Fibroplastic processes are initiated via an increase in secretory activity of activated granuloma macrophages caused by the persistence of the pathogen in the cells of the mononuclear phagocytic system. The dynamics of hydroxyproline concentration under these conditions is determined by changes in the number and differentiation degree of fibroblasts in granulomas and lung interstitium at various stages of tuberculous inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. V. Potapova, V. A. Shkurupiy, T. V. Dsharkova, et al., Bull. Exp. Biol. Med., 150, No. 6, 707-710 (2010).

    Article  Google Scholar 

  2. V. A. Shkurupiy, Tuberculous Granulomatosis. Cytophysiology and Targeted Therapy [in Russian], Moscow (2007).

  3. K. Dheda, H. Booth, J. F. Huggett, et al., J. Infect. Dis., 192, No. 7, 1201-1209 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. C. A. Edwards and W. D. O’Brien, Clin. Chim. Acta., 104, No. 2, 161-167 (1980).

    Article  CAS  PubMed  Google Scholar 

  5. D. S. Faffe and W. A. Zin, Physiol. Rev., 89, No. 3, 759-775 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. K. Kuwano, N. Hagimata, and N. Hara, Fibrogenesis: Cellular and Molecular Basis, Ed. M. S. Razzaque, Georgetown; New York (2005), pp.178-198.

  7. V. A. Shkurupiy, L. B. Kim, I. K. Nikonova, et al., Bull. Exp. Biol. Med., 154, No. 3, 299-302 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. B. Suki and J. H. Bates, Respir. Physiol. Neurobiol., 163, Nos. 1-3, 33-43 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. B. Suki, S. Ito, D. Stamenovic, et al., J. Appl. Physiol., 98, No. 5, 1892-1899 (2005).

    Article  PubMed  Google Scholar 

  10. N. W. Todd, I. G. Luzina, and S. P. Atamas, Fibrogenesis Tissue Repair, 5, No. 1,11 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. T. N. Wight and S. Potter-Perigo, Am. J. Physiol. Gastrointest. Liver Physiol., 301, No. 6, G950-G955 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Kim.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 156, No. 12, pp. 687-691, December, 2013

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkurupiy, V.A., Kim, L.B., Potapova, O.V. et al. Fibrogenesis in Granulomas and Lung Interstitium in Tuberculous Inflammation in Mice. Bull Exp Biol Med 156, 731–735 (2014). https://doi.org/10.1007/s10517-014-2435-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-014-2435-y

Key Words

Navigation