Skip to main content
Log in

Distributed information-based guidance of multiple mobile sensors for urban target search

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

We present a framework for distributed mobile sensor guidance to locate and track a target inside an urban environment. Our approach leverages the communications between robots when a link is available, but it also allows them to act independently. Each robot actively seeks the target using information maximization. The robots are assumed to be capable of communicating with their peers within some distance radius, and the sensor payload of each robot is a camera modeled to have target detection errors of types I and II. Our contributions include an optimal information fusion algorithm for discrete distributions which allows each agent to combine its local information with that of its neighbors, and a path planner that uses the fused estimate and a recent coverage result for information maximization to guide the agents. We include simulations and laboratory experiments involving multiple robots searching for a moving target within model cities of different sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174–188. ISSN 1053-587X. 10.1109/78.978374.

    Article  Google Scholar 

  • Atanasov, N. A., Le Ny, J., & Pappas, G. J. (2015). Distributed algorithms for stochastic source seeking with mobile robot networks. Journal of Dynamic Systems, Measurement, and Control, 137(3), 031004.

    Google Scholar 

  • Charrow, B., Liu, S., Kumar, V., & Michael, N. (2015a). Information-theoretic mapping using cauchy-schwarz quadratic mutual information. In IEEE International Conference on Robotics and Automation, pp. 4791–4798. doi:10.1109/ICRA.2015.7139865.

  • Charrow, B., Michael, N., & Kumar, V. (2015b). Active control strategies for discovering and localizing devices with range-only sensors. In Algorithmic Foundations of Robotics XI, pp. 55–71. Springer.

  • Choi, H.-L., & Lee, S.-J. (2015). A potential-game approach for information-maximizing cooperative planning of sensor networks. Control Systems Technology, IEEE Transactions on, 23(6), 2326–2335.

    Article  Google Scholar 

  • Chung, T. H., & Burdick, J. W. (2008). Multi-agent probabilistic search in a sequential decision-theoretic framework. In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pp. 146–151.

  • Dames, P., Tokekar, P., & Kumar, V. (2015). Detecting, localizing, and tracking an unknown number of moving targets using a team of mobile robots. Intl. Sym. Robot. Research.

  • Dames, P., Schwager, M., Rus, D., & Kumar, V. (2016). Active magnetic anomaly detection using multiple micro aerial vehicles. IEEE Robotics and Automation Letters, 1(1), 153–160.

    Article  Google Scholar 

  • Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269–271.

    Article  MathSciNet  MATH  Google Scholar 

  • Fannes, M., & Spincemaille, P. (2003). The mutual affinity of random measures. Periodica Mathematica Hungarica, 47(1–2), 51–71.

    Article  MathSciNet  MATH  Google Scholar 

  • Franken, D., & Hupper, A. (2005). Improved fast covariance intersection for distributed data fusion. In Information Fusion, 2005 8th International Conference on (vol. 1, p. 7) doi:10.1109/ICIF.2005.1591849.

  • Hatano, Y., & Mesbahi, M. (2005). Agreement over random networks. Automatic Control, IEEE Transactions, 50(11), 1867–1872.

    Article  MathSciNet  MATH  Google Scholar 

  • Haugen, J., & Imsland, L. (2016). Monitoring moving objects using aerial mobile sensors. IEEE Transactions on Control Systems Technology, 24(2), 475–486. doi:10.1109/TCST.2015.2454432. ISSN 1063-6536.

    Google Scholar 

  • Hausman, K., Müller, J., Hariharan, A., Ayanian, N., & Sukhatme, G. S. (2015). Cooperative multi-robot control for target tracking with onboard sensing. The International Journal of Robotics Research, 34(13), 1660–1677.

    Article  Google Scholar 

  • Hoffmann, G. M., & Tomlin, C. J. (2010). Mobile sensor network control using mutual information methods and particle filters. IEEE Transactions on Automatic Control, 55(1), 32–47.

    Article  MathSciNet  MATH  Google Scholar 

  • Julian, B. J., Angermann, M., Schwager, M., & Rus, D. (2012). Distributed robotic sensor networks: An information-theoretic approach. The International Journal of Robotics Research, 31(10), 1134–1154.

    Article  Google Scholar 

  • Julier, S. J., & Uhlmann, J. K. (1997). A non-divergent estimation algorithm in the presence of unknown correlations. In In Proceedings of the American Control Conference. Citeseer, 1997.

  • Kantaros, Y., & Zavlanos, M. M. (2016). Distributed communication-aware coverage control by mobile sensor networks. Automatica, 63, 209–220.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, T., Bolic, M., & Djuric, P. (2015). Resampling methods for particle filtering: Classification, implementation, and strategies. Signal Processing Magazine, IEEE, 32(3), 70–86. doi:10.1109/MSP.2014.2330626. ISSN 1053-5888.

    Article  Google Scholar 

  • Liu, Y., & Nejat, G. (2013). Robotic urban search and rescue: A survey from the control perspective. Journal of Intelligent & Robotic Systems, 72(2), 147–165.

    Article  Google Scholar 

  • Liu, Y., & Nejat, G. (2015). Multirobot cooperative learning for semiautonomous control in urban search and rescue applications. Journal of Field Robotics, 2015.

  • Makarenko, A., & Durrant-Whyte, H. (2006). Decentralized bayesian algorithms for active sensor networks. Information Fusion, 7(4), 418–433.

    Article  Google Scholar 

  • Moreau, L. (2005). Stability of multiagent systems with time-dependent communication links. IEEE Transactions on Automatic Control, 50(2), 169–182. doi:10.1109/TAC.2004.841888. ISSN 0018-9286.

    Article  MathSciNet  MATH  Google Scholar 

  • Olfati-Saber, R., & Murray, R. M. (2003). Consensus protocols for networks of dynamic agents. In Proceedings of the 2003 American Controls Conference, (2, pp. 951–956, June 2003). doi:10.1109/ACC.2003.1239709.

  • Ong, L. L., Bailey, T., Durrant-Whyte, H., & Upcroft, B. (2008). Decentralised particle filtering for multiple target tracking in wireless sensor networks. In Information Fusion, 2008 11th International Conference on, pp. 1–8, June 2008.

  • Pennisi, A., Previtali, F., Gennari, C., Bloisi, D. D., Iocchi, L., Ficarola, F., Vitaletti, A., & Nardi, D. (2015). Multi-robot surveillance through a distributed sensor network. In Cooperative Robots and Sensor Networks 2015, pp. 77–98. Springer, 2015.

  • Pimenta, L. C. A., Schwager, M., Lindsey, Q., Kumar, V., Rus, D., Mesquita, R. C., & Pereira, G. A. S. (2009). Simultaneous coverage and tracking (SCAT) of moving targets with robot networks. In Algorithmic foundation of robotics VIII, pp. 85–99. Springer, 2009.

  • Ramirez-Paredes, J. P., Doucette, E. A., Curtis, J. W., & Gans, N. R. (2015). Urban target search and tracking using a UAV and unattended ground sensors. American Control Conference (ACC), 2015, 2401–2407. doi:10.1109/ACC.2015.7171092.

    Article  Google Scholar 

  • Ramirez-Paredes, J. P., Doucette, E. A., Curtis, J. W., & Gans, N. R. (2016). Optimal placement for a limited-support binary sensor. IEEE Robotics and Automation Letters, 1(1), 439–446. doi:10.1109/LRA.2016.2521406. ISSN 2377-3766.

    Article  Google Scholar 

  • Ryan, A., & Hendrick, J. K. (2010). Particle filter based information-theoretic active sensing. Robotics and Autonomous Systems, 58(5), 574–584.

    Article  Google Scholar 

  • Tomić, T., Schmid, K., Lutz, P., Dömel, A., Kassecker, M., Mair, E., et al. (2012). Toward a fully autonomous UAV: Research platform for indoor and outdoor urban search and rescue. Robotics & Automation Magazine, IEEE, 19(3), 46–56.

    Article  Google Scholar 

  • Trummel, K. E., & Weisinger, J. R. (1986). The complexity of the optimal searcher path problem. Operations Research, 34(2), 324–327.

    Article  MathSciNet  MATH  Google Scholar 

  • Van Scoy, B., Freeman, R. A., & Lynch, K. M. (2015). A fast robust nonlinear dynamic average consensus estimator in discrete time. IFAC-Papers On Line, 48(22), 191–196.

    Article  Google Scholar 

  • Wilcoxon, F., Katti, S. K., & Wilcox, R. A. (1970). Critical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test. Selected Tables in Mathematical Statistics, 1, 171–259.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas R. Gans.

Additional information

This is one of several papers published in Autonomous Robots comprising the Special Issue on Active Perception.

This work was supported by the US Air Force Research Laboratory Award Number FA8651-13-1-0003 and the Mexican government through Conacyt fellowship 253761/310475.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramirez-Paredes, JP., Doucette, E.A., Curtis, J.W. et al. Distributed information-based guidance of multiple mobile sensors for urban target search. Auton Robot 42, 375–389 (2018). https://doi.org/10.1007/s10514-017-9658-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-017-9658-5

Keywords

Navigation