Skip to main content
Log in

Multiwavelength Properties of Selected High Redshift Blazars

  • Published:
Astrophysics Aims and scope

High-redshift blazars detected in the γ -ray band are the most powerful steady objects in the universe. Multiwavelength observations of these distant objects are of particular interest as they can help to understand the γ -ray evolution of blazars as well as the formation and propagation of relativistic jets in the early epochs of the Universe. In this study, we investigate the origin of broadband emission from 7 blazars with redshifts greater than 2.5 by analyzing the data accumulated with Swift UVOT/XRT and Fermi-LAT. We observe several flaring periods with significant increases in flux and hardening of the photon index in the high-energy γ -ray band for PKS 1830-211 (z = 2.507), LQAC 247-061 (z = 2.578), TXS 0536+145 (z = 2.690), and 4C+41.32 (z = 2.550). PKS 1830-211 was in an extraordinarily bright state on MJD 58596.49 when the 3-day averaged flux increased up to (1.74 ± 0.04)·10–5 photon cm-2 s-1. The X-ray emission of PKS 1830-211 is also strongly variable and is characterized by a hard photon index in the range of 0.34-0.94. To model the time-averaged broadband spectral energy distribution of the considered sources, we used a one-zone leptonic emission mechanism for the inverse Compton scattering, considering both synchrotron and external photons. We estimated the corresponding parameters of the emitting particles as well as the energetics of the jet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Padovani, D. M. Alexander, R. J. Assef et al., Rev. Astron. Astrophys., 25, 2, 2017.

    Article  ADS  Google Scholar 

  2. M. Ackermann, R. Anantua, K. Asano et al., Astrophys. J. Lett., 824, L20, 2016.

    Article  ADS  Google Scholar 

  3. L. Foschini, G. Ghisellini, F. Tavecchio et al., Astron. Astrophys., 530, 77, 2011.

    Article  Google Scholar 

  4. L. Foschini, G. Ghisellini, F. Tavecchio et al., Astron. Astrophys., 555, 138, 2013.

    Article  Google Scholar 

  5. K. Nalewajko, Mon. Not. Roy. Astron. Soc., 430, 9, 2013.

    Article  Google Scholar 

  6. A. Brown, Mon. Not. Roy. Astron. Soc., 431, 824, 2013.

    Article  ADS  Google Scholar 

  7. B. Rani, T. P. Krichbaun, L. Fuhrmann et al., Astron. Astrophys., 552, A11, 2013.

    Article  Google Scholar 

  8. S. Saito, L. Stawarz, Y. T. Tanaka et al., Astrophys. J., 766, 11, 2013.

    Article  Google Scholar 

  9. M. Hayashida, K. Nalewajko, G. M. Madejski et al., Astrophys. J., 807, 79, 2015.

    Article  ADS  Google Scholar 

  10. A. Shukla, K. Mannheim, S. Patel et al., Astrophys. J., 854, L26, 2018.

    Article  ADS  Google Scholar 

  11. C. M. Urry, P. Padovani, Publ. Astron. Soc. Pacif., 107, 803, 1995.

    Article  ADS  Google Scholar 

  12. P. Giommi, P. Padovani, Mon. Not. Roy. Astron. Soc., 2268, L51–L54, 1994.

    Article  ADS  Google Scholar 

  13. A. Abdo, M. Ackermann, M. Ajello et al., Astrophys. J., 710, 810, 2010.

    Article  ADS  Google Scholar 

  14. G. Ghisellini, L. Maraschi, A. Treves, Astron. Astrophys., 146, 204, 1985.

    ADS  Google Scholar 

  15. S. D. Bloom, A. P. Marscher, Astrophys. J., 461, 657, 1996.

    Article  ADS  Google Scholar 

  16. L. Maraschi, G. Ghisellini, A. Celotti, Astrophys. J., 397, L5, 1992.

    Article  ADS  Google Scholar 

  17. M. B3azejowski, M. Sikora, R. Moderski et al., Astrophys. J., 545, 107, 2000.

  18. G. Ghisellini, F. Tavecchio, Mon. Not. Roy. Astron. Soc., 397, 985, 2009.

    Article  ADS  Google Scholar 

  19. M. Sikora, M. Begelman, M. Rees, Astrophys. J., 421, 153, 1994.

    Article  ADS  Google Scholar 

  20. C. Dermer, R. Schlickeiser, Astrophys. J., 416, 458, 1993.

    Article  ADS  Google Scholar 

  21. C. Dermer, R. Schlickeiser, A. Mastichiadis, Astron. Astrophys., 256, L27-L30, 1992.

    ADS  Google Scholar 

  22. IceCube Collaboration, Science, 361, 147, 2018.

    Article  ADS  Google Scholar 

  23. P. Padovani, P. Giommi, E. Resconi et al., Mon. Not. Roy. Astron. Soc., 480, 192, 2018.

    Article  ADS  Google Scholar 

  24. A. Mücke, R. Protheroe, Astroparticle Physics, 15, 121, 2001.

    Article  ADS  Google Scholar 

  25. K. Mannheim, Astron. Astrophys., 269, 67, 1993.

    ADS  Google Scholar 

  26. K. Mannheim, P. L. Biermann, Astron. Astrophys., 221, 211, 1989.

    ADS  Google Scholar 

  27. A. Mücke, R. Protheroe, R. Engel et al., Astroparticle Physics, 18, 593, 2003.

    Article  ADS  Google Scholar 

  28. M. Böttcher, A. Reimer, K. Sweeney et al., Astrophys. J., 54, 768, 2013.

    Google Scholar 

  29. S. Ansoldi, L. A. Antonelli, C. Arcaro et al., Astrophys. J., 863, L10, 2018.

    Article  ADS  Google Scholar 

  30. A. Keivani, K. Murase, M. Petropoulou et al., Astrophys. J., 864, 16, 2018.

    Article  Google Scholar 

  31. K. Murase, F. Oikonomou, M. Petropoulou, Astrophys. J., 865, 124, 2018.

    Article  ADS  Google Scholar 

  32. N. Sahakyan, V. Baghmanyan, D. Zargaryan, Astron. Astrophys., 614, A6, 2018.

    Article  ADS  Google Scholar 

  33. C. Righi, F. Tavecchio, L. Pacciani, Mon. Not. Roy. Astron. Soc., 484, 2067, 2019.

    ADS  Google Scholar 

  34. M. Cerruti, A. Zech, C. Boisson, Mon. Not. Roy. Astron. Soc., 483, L12, 2019.

    Article  ADS  Google Scholar 

  35. N. Sahakyan, Astron. Astrophys., 622, A144, 2019.

    Article  ADS  Google Scholar 

  36. S. Gao, A. Fedynitch, W. Winter et al., Nat. Astron., 3, 88, 2019.

    Article  ADS  Google Scholar 

  37. N. Sahakyan, P. Giommi, Mon. Not. Roy. Astron. Soc., 513, 4645, 2022.

    Article  ADS  Google Scholar 

  38. S. Abdollahi, F. Acero, L. Baldini, Astrophys. J. Suppl. Ser., 260, 53, 2022.

    Article  ADS  Google Scholar 

  39. N. Sahakyan, D. Israyelyan, G. Harutyunyan et al., Mon. Not. Roy. Astron. Soc., 498, 2594, 2020.

    Article  ADS  Google Scholar 

  40. W. B. Atwood, A. A. Abdo, M. Ackermann et al., Astrophys. J., 697, 1071, 2009.

    Article  ADS  Google Scholar 

  41. S. Gasparyan, N. Sahakyan, V. Baghmanyan et al., Astrophys. J., 863, 114, 2018.

    Article  ADS  Google Scholar 

  42. D. Zargaryan, S. Gasparyan, V. Baghmanyan et al., Astron. Astrophys., 608, A37, 2017.

    Article  Google Scholar 

  43. V. Baghmanyan, S. Gasparyan, N. Sahakyan, Astrophys. J., 848, 111, 2017.

    Article  ADS  Google Scholar 

  44. R. J. Britto, E. Bottacini, B. Lott et al., Astrophys. J., 830, 162, 2016.

    Article  ADS  Google Scholar 

  45. P. Giommi, M. Perri, M. Capalbi et al., Mon. Not. Roy. Astron. Soc., 507, 5690, 2021.

    Article  ADS  Google Scholar 

  46. HI4PI Collaboration, Astron. Astrophys., 594, A116, 2016.

  47. P. M. W. Kalberla, W. B. Burton, D. Hartman et al., Astron. Astrophys., 440, 775, 2005.

    Article  ADS  Google Scholar 

  48. J. M. Dickey, F. J. Lockman, Ann. Rev. Astron., 28, 215, 1990.

    Article  ADS  Google Scholar 

  49. Y. L. Chang, C. H. Brandt, P. Giommi, Astron. Astrophys, 30, 100, 2020.

    Google Scholar 

  50. N. Sahakyan, D. Israyelyan, G. Harutyunyan et al., Mon. Not. Roy. Astron. Soc., 517, 2757, 2022.

    Article  ADS  Google Scholar 

  51. N. Sahakyan, S. Gasparyan, Mon. Not. Roy. Astron. Soc., 470, 2861, 2017.

    Article  ADS  Google Scholar 

  52. G. Ghisellini, F. Tavecchio, Mon. Not. Roy. Astron. Soc., 448, 1060, 2015.

    Article  ADS  Google Scholar 

  53. E. Massaro, A. Tramacere, M. Perri et al., Astron. Astrophys., 448, 861, 2006.

    Article  ADS  Google Scholar 

  54. A. Tramacere, P. Giommi, M. Perri, Astron. Astrophys., 501, 879, 2009.

    Article  ADS  Google Scholar 

  55. A. Tramacere, E. Massaro, A. Taylor, Astrophys. J., 739, 66, 2011.

    Article  ADS  Google Scholar 

  56. A. Tramacere, Astrophys. Source Code Library, ascl:2009. 001, 2020.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Harutyunyan.

Additional information

Published in Astrofizika, Vol. 66, No. 2, pp. 195-209 (May 2023).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harutyunyan, G. Multiwavelength Properties of Selected High Redshift Blazars. Astrophysics 66, 181–193 (2023). https://doi.org/10.1007/s10511-023-09780-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-023-09780-4

Keywords

Navigation