Skip to main content
Log in

Study of Brightness Variability of the Components of the Visual Binary System 61 Cyg Based on Observations at the Normal Astrograph of the Pulkovo Observatory

  • Published:
Astrophysics Aims and scope

The variability of the components A and B of the visual binary system 61 Cyg is analyzed. The observations were made on the normal astrograph of the Pulkovo Observatory from 1956 through 1982 (a total of 296 brightness estimates). A search was undertaken for the periods of the variability of both components of the system with independent application of two periodogram analysis techniques: a sinusoidal approximation and the traditional Scargle method. As a comparison, the complete photometric series including all 296 values of the stellar magnitude and the yearly averages (27 values) were analyzed. This yielded a reliable value of about 15 years for the period of both components and a period of 8.5-9 years for the component 61 Cyg B that coincides with the 9.1-year period of the coronal and chromospheric activity discovered in 1978 by Wilson. 61 Cyg A was also found to have a less significant period of about 6 years, which coincides, to within the limits of accuracy, with a period of 7.5±1.7 years of the coronal and chromospheric activity previously noted by Hempelmann. Yet another less significant period of about 4 years of unknown origin was observed for 61 Cyg B. This may be the second harmonic of the fundamental period. We assume that the low accuracy of the estimated periods may be related to their instability owing to the complicated multicomponent character of the observed variability. A period of about 15 years detected for both components A and B may be related to astroclimatic or instrumental effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. W. Bessel, Astron. Nachr. 16, 65 (1939).

  2. F. G. W. Struve, Stellarum duplicium et multiplicium mensurae, Petropoli (1837).

  3. O. Struve, Pulkovo Observations, 9 (1878).

  4. D. L. Gorshanov, N. A. Shakht, and A. A. Kiselev, Astrophysics 49, 386 (2006).

  5. N. A. Shakht, D. L. Gorshanov, and O. O. Vasilkova, Astrophysics 60, 507 (2017).

  6. N. A. Shakht, D. L. Gorshanov, and O. O. Vasilkova, 2018arXiv: 180204044S (2018).

  7. K. A. Strand, Publ. Astron. Soc. Pacif. 55 (322), 29 (1943).

  8. A. N. Deich, Soviet Astronomy 21, 1982 (1977).

  9. I. A. Crawford, Project Icarus: Astronomical Considerations Relating to the Choice of Target stars, 2011arXiv:1106.0850v [astro-ph. GA] (2011).

  10. A. J. Weinberger, G. Brygen, G. M. Kennedy, et al., Target selection for the LBTI exozodi key science program, 2015arXiv:1501.01319v1 [astro-ph. EP] (2015).

  11. D. E. Backman, F. C. Gillette, and F. J. Low, Advances in Space Research 6, 43 (1986).

  12. M. J. Kuchner, M. E. Brown, and C. D. Koresko, Publ. Astron. Soc. Pacif. 110 (753), 1336 (1998).

  13. R. Mullan-Gabet, E. Serabin, B. Mennesson, et al., Astrophys. J. 734, 67 (2011).

  14. O. Absil, D. Defrere, V. Coude du Foresto, et al., Astrophys. J. 673, 283 (2008).

  15. P. N. Kholopov, N. N. Samus, M. S. Frolov, et al., Combined General Catalogue of Variable Stars (I-III) (1998).

  16. A. Hempelmann, J. H. M. M. Schmitt, S. L. Baliunas, et al., Astron. Astrophys. 406, L39 (2003).

  17. A. Hempelmann, J. Robrade, J. H. M. M. Schmitt, et al., Astron. Astrophys. 460, 261 (2006).

  18. P. Frick, S. L. Baliunas, D. Galyagin, et al., Astrophys. J. 483, 426 (1997).

  19. O. C. Wilson, Astrophys. J. 226, 379 (1978).

  20. M. Gudel, Astron. Astrophys. 264, L31 (1992).

  21. V. N. Frolov, E. G. Zhilinski, Yu. K. Ananjevaja, et al., Astron. Astrophys. 396, 125 (2002).

  22. V. N. Frolov, Yu. K. Ananjevskaja, D. L. Gorshanov, et al., Astron. Lett. 36, 338 (2010).

  23. W. H. Press, S. A. Teukolsky, W. T. Watterling, et al., Numerical Recipes. The Art of Scientific Computing (Second Edition). Section 13.8 (C), Cambridge University Press (1992).

  24. M. Zechmeister and M. Kürstner, Astron. Astrophys. 496, 577 (2009).

  25. J. D. Alvarado-Gómez, G. A. J. Hussian, J. Grunhut, et al., Astron. Astrophys. 582, A38 (2015).

  26. M. Schöller, M. A. Pogodin, J. A. Cahuasqui, et al., Astron. Astrophys. 592, 50 (2016).

  27. M. A. Pogodin, S. E. Pavlovskij, N. A. Drake, et al., ASP Conf. Ser. 510, 157 (2017).

  28. J. D. Scargle, Astrophys. J. 263, 835 (1982).

  29. D. S. Black and J. D. Scargle, Astrophys. J. 263, 854 (1982).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Astrofizika, Vol. 61, No. 4, pp. 495-510 (November 2018).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyakov, E.V., Vasilkova, O.O., Gorshanov, D.L. et al. Study of Brightness Variability of the Components of the Visual Binary System 61 Cyg Based on Observations at the Normal Astrograph of the Pulkovo Observatory. Astrophysics 61, 444–457 (2018). https://doi.org/10.1007/s10511-018-9549-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-018-9549-2

Keywords

Navigation