Skip to main content
Log in

The Search for Periodic Components in Observational Data

  • REVIEWS
  • Published:
Astrophysics Aims and scope

This review is devoted to the problem of searching for periodicities in observational data using periodograms based on the general statistical likelihood ratio test and special variants of it, including the classical Lomb-Scargle periodogram. Primary emphasis is on the problem of estimating the statistical significance of the periodicities detected in this manner. We assume that a universal solution of this problem exists involving an effective method in which the periodogram is regarded as a random process (or random field), while an approximation for the required “false alarm probability” is constructed by a generalized Rice method. Besides a unified method for determining the expected noise levels (or significance levels) of these periodograms, we also examine some important special cases with different models of periodic signals (linear and nonlinear). The false alarm probability associated with an observed signal is approximated in most cases by a formula of the type \( {e}^{- z} P\left(\sqrt{z}\right) \), where z is the observed maximum readout in the periodogram and P is an algebraic polynomial with coefficients that depend on the conditions of the problem. We also examine the problem of separating composite signals with several frequencies from noise. In this case correct analysis of the data requires the use of so-called multifrequency periodograms based on models of signals containing several periodic components. We show that a complete solution to this problem requires construction of 2n-1 such periodograms, where n is the total number of possible frequencies. Finally, we describe some program packages that we have developed which make it easier to perform practical frequency analysis of series using this theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. R. Lomb, Astrophys. J. Suppl. Ser. 39, 447 (1976).

    Google Scholar 

  2. J. D. Scargle, Astrophys. J. 263, 835 (1982).

    Article  ADS  Google Scholar 

  3. A. Schuster, Terrestrial Magnetism and Atmospheric Electricity 3, 13, 1898).

    Article  Google Scholar 

  4. V. V. Vityazev, Analysis of Nonuniform Time Series [in Russian], Izd. SPbGU, St. Petersburg (2001).

    Google Scholar 

  5. R. Vio, M. Diaz-Trigo, and P. Andreani, Astronomy & Computing 1, 5 (2013).

    Article  ADS  Google Scholar 

  6. J. H. Horne and S. L. Baliunas, Astrophys. J. 302, 757 (1986).

    Article  ADS  Google Scholar 

  7. C. Koen, Astrophys. J. 348, 700 (1990).

    Article  ADS  Google Scholar 

  8. A. Schwarzenberg-Czerny, Astrophys. J. 460, L107 (1996).

    Article  ADS  Google Scholar 

  9. A. Schwarzenberg-Czerny, Astrophys. J. 489, 941 (1997).

    Article  ADS  Google Scholar 

  10. A. Schwarzenberg-Czerny, Mon. Notic. Roy. Astron. Soc. 301, 831 (1998).

    Article  ADS  Google Scholar 

  11. A. Schwarzenberg-Czerny, Baltic Astron. 7, 43 (1998).

    ADS  Google Scholar 

  12. A. Cumming, G. W. Marcy, and R. P. Butler, Astrophys. J. 526, 890 (1999).

    Article  ADS  Google Scholar 

  13. A. Cumming, Mon. Notic. Roy. Astron. Soc. 354, 1165 (2004).

    Article  ADS  Google Scholar 

  14. F. A. M. Frescura, C. A. Engelbrecht, and B. S. Frank, Mon. Notic. Roy. Astron. Soc. 388, 1693 (2008).

    Article  ADS  Google Scholar 

  15. M. J. Graham, A. J. Drake, S. G. Djorgovski, et al., Mon. Notic. Roy. Astron. Soc. 434, 3423 (2013).

    Article  ADS  Google Scholar 

  16. V. V. Vityazev, Spectral-correlation Analysis of Uniform Time Series [in Russian], Izd. SPbGU, St. Petersburg (2001).

    Google Scholar 

  17. R. V. Baluev, Mon. Notic. Roy. Astron. Soc. 393, 969 (2009).

    Article  ADS  Google Scholar 

  18. R. V. Baluev, Mon. Notic. Roy. Astron. Soc. 385, 1279 (2008).

    Article  ADS  Google Scholar 

  19. R. V. Baluev, Celest. Mech. Dyn. Astron. 111, 235 (2011).

    Article  MATH  ADS  Google Scholar 

  20. R. V. Baluev, Mon. Notic. Roy. Astron. Soc. 429, 2052 (2013).

    Article  ADS  Google Scholar 

  21. G. Ranucci and M. Rovere, Phys. Rev. D. 75, 013010 (2007).

    Article  ADS  Google Scholar 

  22. S. O. Rice, Bell System Tech. J. 23, 282 (1944).

    Article  MATH  MathSciNet  Google Scholar 

  23. M. F. Kratz, Probability Surveys 3, 230 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  24. J.-M. Azaïs and M. Wschebor, Level Sets and Extrema of Random Processes and Fields, Wiley (2009).

  25. R. V. Baluev, Mon. Notic. Roy. Astron. Soc. 395, 1541 (2009).

    Article  ADS  Google Scholar 

  26. R. V. Baluev, Mon. Notic. Roy. Astron. Soc. 431, 1167 (2013).

    Article  ADS  Google Scholar 

  27. R. B. Davies, Biometrika 64, 247 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  28. R. B. Davies, Biometrika 74, 33 (1987).

    MATH  MathSciNet  Google Scholar 

  29. R. B. Davies, Biometrika 89, 484 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  30. S. S. Vogt, R. P. Butler, and N. Haghighipour, Astron. Nachr. 333, 561 (2012).

    ADS  Google Scholar 

  31. D. M. Palmer, Astrophys. J. 695, 496 (2009).

    Article  ADS  Google Scholar 

  32. R. V. Baluev, Vestn. SPbGU (Ser. 1) 2, 129 (2009).

    Google Scholar 

  33. S. Ferraz-Mello, Astron. J. 86, 619 (1981).

    Article  ADS  Google Scholar 

  34. M. Zechmeister and M. Kürster, Astron. Astrophys. 496, 577 (2009).

    Article  ADS  Google Scholar 

  35. G. Anglada-Escudé and M. Tuomi, Astron. Astrophys. 548, A58 (2012).

    Article  ADS  Google Scholar 

  36. V. V. Vityazev, Astron. Astrophys. Trans. 11, 159 (1996).

    Article  ADS  Google Scholar 

  37. R. V. Baluev, Celest. Mech. Dyn. Astron. 102, 297 (2008).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. D. Dacunha-Castelle and E. Gassiat, Ann. Stat. 27, 1178 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  39. J.-M. Azaïs, C. Delmas, Extremes 5, 181 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  40. S. J. O’Toole, H. R. A. Jones, C. G. Tinney, et al., Astrophys. J. 701, 1732 (2009).

    Article  ADS  Google Scholar 

  41. R. V. Baluev, Mon. Notic. Roy. Astron. Soc. 436, 807 (2013).

    Article  ADS  Google Scholar 

  42. G. Foster, Astron. J. 109, 1889 (1995).

    Article  ADS  Google Scholar 

  43. G. Foster, Astron. J. 111, 541 (1996).

    Article  ADS  Google Scholar 

  44. G. Foster, Astron. J. 111, 555 (1996).

    Article  ADS  Google Scholar 

  45. R. V. Baluev, Astronomy & Computing 3-4, 50 (2013).

    Article  ADS  Google Scholar 

  46. Q. H. Vuong, Econometrica 57, 307 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  47. R. V. Baluev, Mon. Notic. Roy. Astron. Soc. 422, 2372 (2012).

    Article  ADS  Google Scholar 

  48. R. V. Baluev, Astronomy & Computing 2, 18 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Baluev.

Additional information

Translated from Astrofizika, Vol. 57, No. 3, pp. 469-493 (August 2014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baluev, R.V. The Search for Periodic Components in Observational Data. Astrophysics 57, 434–455 (2014). https://doi.org/10.1007/s10511-014-9348-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-014-9348-3

Keywords

Navigation