Skip to main content
Log in

Variable Chaplygin gas: constraints from supernovae, GRB and gravitational wave merger events

  • Research
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

We investigate the cosmological constraints on the Variable Chaplygin gas model from the latest observational data: SCP Union 2.1 compilation dataset of Type Ia supernovae (SNe Ia), Pantheon sample of SNe Ia, Platinum Sample of Gamma Ray Bursts (GRB), and GWTC-3 of gravitational wave merger events. Variable Chaplygin gas is a model of interacting dark matter and dark energy, which interpolates from a dust-dominated era to a quintessence-dominated era. The Variable Chaplygin gas model is shown to be compatible with Type Ia Supernovae and gravitational merger data. We have obtained tighter constraints on cosmological parameters \(B_{s}\) and \(n\) using the Pantheon sample. Using the Markov chain Monte Carlo (MCMC) method on the Pantheon sample, we obtain \(B_{s}=0.108 \pm 0.034\), \(n=1.157 \pm 0.513\) and \(H_{0}=70.020 \pm 0.407\). For GRBs, we get \(B_{s}=0.20 \pm 0.11\), \(n=1.45 \pm 1.40\) and \(H_{0}=70.41 \pm 0.67\), and on GWTC-3, we obtain \(B_{s}=0.130\pm 0.076\), \(n=0.897 \pm 1.182\) and \(H_{0}=69.838 \pm 3.007\). The combined constraints from the above data sets are \(B_{s}=0.11\pm 0.03\), \(n=1.14 \pm 0.36\) and \(H_{0}=70.34 \pm 0.61\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. We have used the fact that for a flat Universe, \(\Omega _{b0}+\Omega _{r0}+\Omega _{ch0}=1\), i.e., the total matter density sums up to unity.

References

  • Ai, S.: The photospheric emission model for gamma-ray bursts: a comprehensive study. Astrophys. J. 860(1), 57 (2018). https://doi.org/10.3847/1538-4357/aac90c

    Article  ADS  Google Scholar 

  • Bahcall, N.A., Ostriker, J.P., Perlmutter, S., Steinhardt, P.J.: The cosmic triangle: revealing the state of the universe. Science 284(5419), 1481–1488 (1999)

    ADS  Google Scholar 

  • Barrow, J.D., Clifton, T.: Cosmologies with energy exchange. Phys. Rev. D 73(10), 103520 (2006)

    ADS  MathSciNet  Google Scholar 

  • Bean, R., Doré, O.: Probing dark energy perturbations: the dark energy equation of state and speed of sound as measured by wmap. Phys. Rev. D 69, 083503 (2004). https://doi.org/10.1103/PhysRevD.69.083503

    Article  ADS  Google Scholar 

  • Bento, M., Bertolami, O., Santos, N.: A two-field quintessence model. Phys. Rev. D 65(6), 067301 (2002)

    ADS  Google Scholar 

  • Bento, M., Bertolami, O., Sen, A.A.: Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Phys. Rev. D 66(4), 043507 (2002)

    ADS  Google Scholar 

  • Bento, M.C., Bertolami, O., Sen, A.A.: Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Phys. Rev. D 66, 043507 (2002). https://doi.org/10.1103/PhysRevD.66.043507

    Article  ADS  Google Scholar 

  • Bilić, N., Tupper, G.B., Viollier, R.D.: Unification of dark matter and dark energy: the inhomogeneous Chaplygin gas. Phys. Lett. B 535(1–4), 17–21 (2002)

    ADS  MATH  Google Scholar 

  • Bilic, N., Tupper, G.B., Viollier, R.D.: Transient acceleration in extended quartessence. ArXiv preprint (2008). arXiv:astro-ph/0503428

  • Boehmer, C.G., Caldera-Cabral, G., Lazkoz, R., Maartens, R.: Dynamics of dark energy with a coupling to dark matter. Phys. Rev. D 78(2), 023505 (2008)

    ADS  MATH  Google Scholar 

  • Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Phantom energy: dark energy with w \(< -1\) causes a cosmic doomsday. Phys. Rev. Lett. 91(7), 071301 (2003)

    ADS  Google Scholar 

  • Carturan, D., Finelli, F.: Cosmological effects of a class of fluid dark energy models. Phys. Rev. D 68(10), 103501 (2003)

    ADS  Google Scholar 

  • Chimento, L., Jakubi, A.: Exact solutions and scalar fields in gravity. Int. J. Mod. Phys. D 5, 71 (1996)

    ADS  Google Scholar 

  • Cucchiara, A., Levan, A.J., Strolger, L.-G., Berger, E., Fox, D.B., Tanvir, N.R., Brammer, G., et al.: The afterglow of the first optically discovered gamma-ray burst afterglow: Grb 090423. Astrophys. J. 736, 1 (2011)

    Google Scholar 

  • D’Agostini, G.: Fits, and especially linear fits, with errors on both axes, extra variance of the data points and other complications. ArXiv preprint (2005). arXiv:physics/0511182

  • D’Agostini, G.: Fits, and especially linear fits, with errors on both axes, extra variance of the data points and other complications. ArXiv e-prints (2005). arXiv:physics/0511182. https://doi.org/10.48550/arXiv.physics/0511182

  • Dainotti, M.G.: A new distance indicator for gamma-ray bursts. Mon. Not. R. Astron. Soc. 391(1), 79–83 (2008). https://doi.org/10.1111/j.1745-3933.2008.00560.x

    Article  Google Scholar 

  • Dainotti, M.G.: A fundamental plane for long gamma-ray bursts with X-ray plateaus. Astrophys. J. Lett. 825(2), L20 (2016). https://doi.org/10.3847/2041-8205/825/2/L20

    Article  ADS  Google Scholar 

  • Dainotti, M.G.: A new fundamental plane for long gamma-ray bursts with X-ray plateaus and its cosmological implications. Astrophys. J. 848(2), 88 (2017). https://doi.org/10.3847/1538-4357/aa8856

    Article  ADS  Google Scholar 

  • Dainotti, M., Lenart, A.Ł., Chraya, A., Sarracino, G., Nagataki, S., Fraija, N., Capozziello, S., Bogdan, M.: The gamma-ray bursts fundamental plane correlation as a cosmological tool. Mon. Not. R. Astron. Soc. 518(2), 2201–2240 (2023)

    ADS  Google Scholar 

  • Debnath, U., Banerjee, A., Chakraborty, S.: Role of modified Chaplygin gas in accelerated universe. Class. Quantum Gravity 21(23), 5609 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  • Del Popolo, A., Pace, F., Maydanyuk, S., Lima, J., Jesus, J.: Shear and rotation in Chaplygin cosmology. Phys. Rev. D 87(4), 043527 (2013)

    ADS  Google Scholar 

  • Dev, A., Jain, D., Alcaniz, J.S.: Constraints on Chaplygin quartessence from the class gravitational lens statistics and supernova data. Astron. Astrophys. 417(3), 847–852 (2004)

    ADS  Google Scholar 

  • Eichler, D., Livio, M., Piran, T., Schramm, D.N.: The cosmic fireball. Nature 340, 126 (1989)

    ADS  Google Scholar 

  • Fabris, J.C., Gonçalves, S.V., de Souza, P.E.: Density perturbations in a universe dominated by the Chaplygin gas. Gen. Relativ. Gravit. 34(1), 53–63 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  • Gong, Y., Duan, C.-K.: Constraints on alternative models to dark energy. Class. Quantum Gravity 21(15), 3655 (2004)

    ADS  MATH  Google Scholar 

  • Gonzalez, T., Leon, G., Quiros, I.: Dynamics of quintessence models of dark energy with exponential coupling to dark matter. Class. Quantum Gravity 23(9), 3165 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  • Guo, Z.-K., Zhang, Y.-Z.: Cosmology with a variable Chaplygin gas. Phys. Lett. B 645(4), 326–329 (2007). https://doi.org/10.1016/j.physletb.2006.12.063

    Article  ADS  Google Scholar 

  • Guo, Z.-K., Ohta, N., Zhang, Y.-Z.: Parametrization of quintessence and its potential. Phys. Rev. D 72(2), 023504 (2005)

    ADS  Google Scholar 

  • Guo, Z.-K., Ohta, N., Zhang, Y.-Z.: Parametrizations of the dark energy density and scalar potentials. Mod. Phys. Lett. A 22(12), 883–890 (2007)

    ADS  MATH  Google Scholar 

  • Hannestad, S., Mörtsell, E.: Probing the dark side: constraints on the dark energy equation of state from cmb, large scale structure, and type ia supernovae. Phys. Rev. D 66(6), 063508 (2002)

    ADS  Google Scholar 

  • Hernández-Almada, A., García-Aspeitia, M.A., Rodríguez-Meza, M.A., Motta, V.: A hybrid model of viscous and Chaplygin gas to tackle the Universe acceleration. Eur. Phys. J. C 81(4), 295 (2021). arXiv:2103.16733 [astro-ph.CO]. https://doi.org/10.1140/epjc/s10052-021-09104-w

    Article  ADS  Google Scholar 

  • Jackiw, R.: A particle field theorist’s lectures on supersymmetric, non-Abelian fluid mechanics and d-branes. ArXiv preprint (2000). arXiv:physics/0010042

  • Jamil, M., Rashid, M.A.: Constraining the coupling constant between dark energy and dark matter. Eur. Phys. J. C 60(1), 141–147 (2009)

    ADS  Google Scholar 

  • Kahya, E., Khurshudyan, M., Pourhassan, B., Myrzakulov, R., Pasqua, A.: Higher order corrections of the extended Chaplygin gas cosmology with varying G and \(\Lambda \). Eur. Phys. J. C 75(2), 1–12 (2015)

    Google Scholar 

  • Kamenshchik, A., Moschella, U., Pasquier, V.: An alternative to quintessence. Phys. Lett. B 511(2–4), 265–268 (2001)

    ADS  MATH  Google Scholar 

  • Kumar, P., Zhang, B.: The physics of gamma-ray bursts. Phys. Rep. 561, 1–109 (2015)

    ADS  Google Scholar 

  • Lattimer, J.M., Schramm, D.N.: Neutron star-neutron star collisions and gamma-ray bursts. Astrophys. J. 210, 54 (1976)

    Google Scholar 

  • Li, L.-X., Paczyński, B.: Transient events from gamma-ray bursts. Astrophys. J. 507, 59–62 (1998)

    Google Scholar 

  • Liang, L.: On the origin of the prompt emission in gamma-ray bursts. Astrophys. J. 236(2), 26 (2018). https://doi.org/10.3847/1538-4365/aad642

    Article  ADS  Google Scholar 

  • MacFadyen, A., Woosley, S.E.: The physics of gamma-ray bursts. Astrophys. J. 524, 262–289 (1999)

    ADS  Google Scholar 

  • MacFadyen, A.I., Woosley, S.E., Heger, A.: The physics of gamma-ray bursts. Astrophys. J. 550, 410 (2001)

    ADS  Google Scholar 

  • Miller, A.D., Caldwell, R., Devlin, M.J., Dorwart, W., Herbig, T., Nolta, M., Page, L., Puchalla, J., Torbet, E., Tran, H.: A measurement of the angular power spectrum of the cosmic microwave background from \(l= 100\) to 400. Astrophys. J. 524(1), L1 (1999)

    ADS  Google Scholar 

  • Nagataki, S.: The afterglow of gamma-ray bursts: implications of the grb 060614 afterglow. Astrophys. J. 704, 937–950 (2009)

    ADS  Google Scholar 

  • Nagataki, S., Takahashi, R., Mizuta, A., Takiwaki, T.: The prompt emission of gamma-ray bursts: implications of the grb 060614 afterglow. Astrophys. J. 659, 512–529 (2007)

    ADS  Google Scholar 

  • Narayan, R., Paczynski, B., Piran, T.: Gamma-ray bursts as the death throes of massive binary stars. Astrophys. J. 395, 83 (1992)

    ADS  Google Scholar 

  • Paczynski, B.: Gamma-ray bursts from neutron star mergers. Astrophys. J. 308, 43–46 (1986)

    ADS  Google Scholar 

  • Padmanabhan, T.: Cosmological constant—the weight of the vacuum. Phys. Rep. 380(5–6), 235–320 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  • Pedram, P., Jalalzadeh, S.: Quantum frw cosmological solutions in the presence of Chaplygin gas and perfect fluid. Phys. Lett. B 659(1–2), 6–13 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  • Peebles, P.J.E., Ratra, B.: The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559–606 (2003). https://doi.org/10.1103/RevModPhys.75.559

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R.A., Nugent, P., Castro, P.G., Deustua, S., Fabbro, S., Goobar, A., Groom, D.E., Hook, I.M., Kim, A.G., Kim, M.Y., Lee, J.C., Nunes, N.J., Pain, R., Pennypacker, C.R., Quimby, R., Lidman, C., Ellis, R.S., Irwin, M., McMahon, R.G., Ruiz-Lapuente, P., Walton, N., Schaefer, B., Boyle, B.J., Filippenko, A.V., Matheson, T., Fruchter, A.S., Panagia, N., Newberg, H.J.M., Couch, W.J., Project, T.S.C.: Measurements of \(\omega \) and \(\lambda \) from 42 high-redshift supernovae. Astrophys. J. 517(2), 565–586 (1999). https://doi.org/10.1086/307221

    Article  ADS  MATH  Google Scholar 

  • Planck Collaboration: Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, (2018). https://doi.org/10.1051/0004-6361/201833910. arXiv:1807.06209

  • Ratra, B., Peebles, P.J.E.: Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 37, 3406–3427 (1988). https://doi.org/10.1103/PhysRevD.37.3406

    Article  ADS  Google Scholar 

  • Rea, N., Gullón, M., Pons, J.A., Perna, R., Dainotti, M.G., Miralles, J.A., Torres, D.F.: The long-term evolution of the gamma-ray burst afterglow grb 130427a: implications for the central engine. Astrophys. J. 813, 92 (2015)

    ADS  Google Scholar 

  • Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P.M., Gilliland, R.L., Hogan, C.J., Jha, S., Kirshner, R.P., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116(3), 1009 (1998)

    ADS  Google Scholar 

  • Rodney, S.A., Strolger, L.-G., Tanvir, N.R., Berger, E., Cucchiara, A., Fox, D.B., Levan, A.J., et al.: The optical afterglow of grb 140506a: constraints on the redshift and the nature of the progenitor. Astrophys. J. 801, 156 (2015). https://doi.org/10.1088/0004-637X/801/2/156

    Article  Google Scholar 

  • Rowlinson, A., Gompertz, B.P., Dainotti, M.G., O’Brien, P.T., Wijers, R.A.M.J., van der Horst, A.J.: The evolution of gamma-ray burst afterglows: a new empirical relationship. Mon. Not. R. Astron. Soc. 443, 1779–1787 (2014)

    ADS  Google Scholar 

  • Saadat, H., Pourhassan, B.: Effect of varying bulk viscosity on generalized Chaplygin gas. Int. J. Theor. Phys. 53, 1168–1173 (2014)

    MATH  Google Scholar 

  • Sahni, V., Starobinsky, A.: The case for a positive cosmological \(\lambda \)-term. Int. J. Mod. Phys. D 9(04), 373–443 (2000)

    ADS  Google Scholar 

  • Sandvik, H.B., Tegmark, M., Zaldarriaga, M., Waga, I.: The end of unified dark matter? Phys. Rev. D 69(12), 123524 (2004)

    ADS  Google Scholar 

  • Scolnic, D.M., Jones, D., Rest, A., Pan, Y., Chornock, R., Foley, R., Huber, M., Kessler, R., Narayan, G., Riess, A., et al.: The complete light-curve sample of spectroscopically confirmed sne ia from pan-starrs1 and cosmological constraints from the combined pantheon sample. Astrophys. J. 859(2), 101 (2018)

    ADS  Google Scholar 

  • Sen, A.: Tachyon matter. J. High Energy Phys. 2002(07), 065 (2002)

    MathSciNet  Google Scholar 

  • Sethi, G., Singh, S.K., Kumar, P., Jain, D., Dev, A.: Variable Chaplygin gas: constraints from CMBR and SNe IA. Int. J. Mod. Phys. D 15(07), 1089–1098 (2006). https://doi.org/10.1142/s0218271806008644

    Article  ADS  MATH  Google Scholar 

  • Spergel, D.N., Verde, L., Peiris, H.V., Komatsu, E., Nolta, M.R., Bennett, C.L., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., Meyer, S.S., Page, L., Tucker, G.S., Weiland, J.L., Wollack, E., Wright, E.L.: First-year Wilkinson microwave anisotropy probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. Ser. 148(1), 175–194 (2003). https://doi.org/10.1086/377226

    Article  ADS  Google Scholar 

  • Stanek, K.Z., Matheson, T., Garnavich, P.M., Jha, S., Kirshner, R.P., Challis, P., Berlind, P., et al.: The optical and near-infrared light curve of grb 030329: evidence for a two-component afterglow. Astrophys. J. 591, 17–20 (2003)

    Google Scholar 

  • Suzuki, N., Rubin, D., Lidman, C., Aldering, G., Amanullah, R., Barbary, K., Barrientos, L., Botyanszki, J., Brodwin, M., Connolly, N., et al.: The hubble space telescope cluster supernova survey. V. Improving the dark-energy constraints above \(z> 1\) and building an early-type-hosted supernova sample. Astrophys. J. 746(1), 85 (2012)

    ADS  Google Scholar 

  • Tanvir, N.R., Fox, D.B., Levan, A.J., Berger, E., Wiersema, K., Fynbo, J.P.U., Cucchiara, A., et al.: A tidal disruption event as the origin of the gamma-ray burst grb 090423. Nature 461, 1254 (2009). https://doi.org/10.1038/nature08459

    Article  ADS  Google Scholar 

  • The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration: Open data from the first and second observing runs of advanced ligo and advanced virgo. SoftwareX 13, 100658 (2021a). https://doi.org/10.1016/j.softx.2021.100658

    Article  MATH  Google Scholar 

  • the LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. ArXiv e-prints (2021b). arXiv:2111.03606. https://doi.org/10.48550/arXiv.2111.03606

  • Torrado, J., Lewis, A.: Cobaya: Bayesian analysis in cosmology. Astrophysics Source Code Library, record ascl:1910.019 (2019)

  • Torrado, J., Lewis, A.: Cobaya: code for Bayesian analysis of hierarchical physical models. J. Cosmol. Astropart. Phys. 2021(05), 057 (2021). https://doi.org/10.1088/1475-7516/2021/05/057

    Article  MathSciNet  Google Scholar 

  • Usov, V.V.: Magnetic monopoles and gamma-ray bursts. Nature 357, 472–474 (1992). https://doi.org/10.1038/357472a0

    Article  ADS  Google Scholar 

  • Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989). https://doi.org/10.1103/RevModPhys.61.1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Woosley, S.E., Langer, N., Weaver, T.A.: The evolution and explosion of massive stars. I. Numerical models of stellar evolution and nucleosynthesis from 8 to 100 solar masses. Astrophys. J. 405, 273 (1993)

    ADS  Google Scholar 

  • Yang, W., Pan, S., Vagnozzi, S., Valentino, E.D., Mota, D.F., Capozziello, S.: Dawn of the dark: unified dark sectors and the EDGES cosmic dawn 21-cm signal. J. Cosmol. Astropart. Phys. 2019(11), 044 (2019). https://doi.org/10.1088/1475-7516/2019/11/044

    Article  Google Scholar 

  • Zhai, X.-H., Xu, Y.-D., Li, X.-Z.: Viscous generalized Chaplygin gas. Int. J. Mod. Phys. D 15, 1151–1162 (2006). arXiv:astro-ph/0511814. https://doi.org/10.1142/S0218271806008784

    Article  ADS  MATH  Google Scholar 

  • Zlatev, I., Wang, L., Steinhardt, P.J.: Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 82, 896–899 (1999). https://doi.org/10.1103/PhysRevLett.82.896

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would acknowledge Isophote for providing us with the opportunity to work on this project. Dr. Geetanjali Sethi is also thankful to Principal, St. Stephen’s College for allowing her to be a part of this project. Ashley Chraya is thankful to Department of Physics, Indian Institute of Science Education and Research, Mohali for enabling him to be a part of this project. We also thank Dr. Akshay Rana, St. Stephen’s College for his inputs and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

All the three authors had equal contribution

Corresponding author

Correspondence to Geetanjali Sethi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chraya, A., Muralichandran, Y. & Sethi, G. Variable Chaplygin gas: constraints from supernovae, GRB and gravitational wave merger events. Astrophys Space Sci 368, 54 (2023). https://doi.org/10.1007/s10509-023-04211-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-023-04211-4

Keywords

Navigation