Skip to main content
Log in

Observational constraints on Tsallis holographic dark energy with Ricci horizon cutoff

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

In this research, we are interested in constraining the nonlinear interacting and noninteracting Tsallis holographic dark energy (THDE) with Ricci horizon cutoff by employing three observational datasets. To this aim, the THDE with Ricci horizon considering the noninteraction and nonlinear interaction terms will be fitted by the SNe Ia, SNe Ia+H(z), and SNe Ia+H(z)+GRB samples to investigate the Hubble (\(H(z)\)), dark-energy equation of state (\(\omega _{DE}\)), effective equation of state (\(\omega _{eff}\)), and deceleration (\(q\)) parameters. Investigating the \(H(z)\) parameter illustrates that our models are in good consistency with respect to observations. Also, it can reveal the turning point for both noninteracting and nonlinear interacting THDE with Ricci cutoff in the late-time era. Next, the analysis of the \(\omega _{DE}\) for our models displays that the dark energy can experience the phantom state at the current time. However, this lies in the quintessence regime in the early era and approaches the cosmological constant in the late-time epoch. Similar results will be given for the \(\omega _{eff}\) parameter with the difference that the \(\omega _{eff}\) will experience the quintessence region at the current redshift. In addition to the mentioned parameters, the study of the \(q\) parameter indicates that the models satisfy an acceptable transition phase from the matter- to the dark energy-dominated era. After that, the classical stability (\(v_{s}^{2}\)) will be analyzed for our models. The \(v_{s}^{2}\) shows that the noninteracting and nonlinear interacting THDE with Ricci cutoff will be stable in the past era but unstable in the present and progressive epochs. Then, we will employ the \(Jerk\) (\(J\)) and \(OM\) parameters to distinguish between our models and the \(\Lambda CDM\) model. Finally, we will calculate the age of the Universe for the THDE and nonlinear interacting THDE with Ricci as the IR cutoff.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited.

Code Availability

Not applicable.

References

  • Abdollahi Zadeh, M., Sheykhi, A., Moradpour, H., Bamba, K.: Note on Tsallis holographic dark energy. Eur. Phys. J. C 78, 940 (2018). https://doi.org/10.1140/epjc/s10052-018-6427-3

    Article  MATH  ADS  Google Scholar 

  • Abdollahi Zadeh, M., Sheykhi, A., Bamba, K., Moradpour, H.: Effects of anisotropy on the sign-changeable interacting Tsallis holographic dark energy. Mod. Phys. Lett. A 35, 2050053 (2020)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Ade, P.A.R., Aikin, R.W., Barkats, D., Benton, S.J., Bischoff, C.A., Bock, J.J., Brevik, J.A., Buder, I., Bullock, E., Dowell, C.D., Duband, L., Filippini, J.P., Fliescher, S., Golwala, S.R., Halpern, M., Hasselfield, M., Hildebrandt, S.R., Hilton, G.C., Hristov, V.V., Irwin, K.D., Karkare, K.S., Kaufman, J.P., Keating, B.G., Kernasovskiy, S.A., Kovac, J.M., Kuo, C.L., Leitch, E.M., Lueker, M., Mason, P., Netterfield, C.B., Nguyen, H.T., O’Brient, R., Ogburn, R.W., Orlando, A., Pryke, C., Reintsema, C.D., Richter, S., Schwarz, R., Sheehy, C.D., Staniszewski, Z.K., Sudiwala, R.V., Teply, G.P., Tolan, J.E., Turner, A.D., Vieregg, A.G., Wong, C.L., Yoon, K.W.: Detection of B-mode polarization at degree angular scales by BICEP2. Phys. Rev. Lett. 112, 241101 (2014)

    Article  ADS  Google Scholar 

  • Aljaf, M., Gregoris, D., Khurshudyan, M.: Constraints on interacting dark energy models through cosmic chronometers and Gaussian process. Eur. Phys. J. C 81, 544 (2021). https://doi.org/10.1140/epjc/s10052-021-09306-2

    Article  ADS  Google Scholar 

  • Aly, A.A.: Tsallis holographic dark energy with Granda-Oliveros scale in (\(n\) + 1)-dimensional FRW universe. Adv. Astron. 2019, 8138067 (2019). https://doi.org/10.1155/2019/8138067

    Article  ADS  Google Scholar 

  • Anagnostopoulos, F.K., Basilakos, S., Saridakis, E.N.: Observational constraints on Barrow holographic dark energy. Eur. Phys. J. C 80, 826 (2020). https://doi.org/10.1140/epjc/s10052-020-8360-5

    Article  ADS  Google Scholar 

  • Arévalo, F., Bacalhau, A.P., Zimdahl, W.: Cosmological dynamics with nonlinear interactions. Class. Quantum Gravity 29, 235001 (2012). https://doi.org/10.1088/0264-9381/29/23/235001

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Astier, P., Guy, J., Regnault, N., Pain, R., Aubourg, E., Balam, D., Basa, S., Carlberg, R.G., Fabbro, S., Fouchez, D., Hook, I.M., Howell, D.A., Lafoux, H., Neill, J.D., Palanque-Delabrouille, N., Perrett, K., Pritchet, C.J., Rich, J., Sullivan, M., Taillet, R., Aldering, G., Antilogus, P., Arsenijevic, V., Balland, C., Baumont, S., Bronder, J., Courtois, H., Ellis, R.S., Filiol, M., Gonçalves, A.C., Goobar, A., Guide, D., Hardin, D., Lusset, V., Lidman, C., McMahon, R., Mouchet, M., Mourao, A., Perlmutter, S., Ripoche, P., Tao, C., Walton, N.: The supernova legacy survey: measurement of \(Omega_{M}\), \(Omega_{Lambda}\) and \(w\) from the first year data set. Astron. Astrophys. 447, 31–48 (2006). https://doi.org/10.1051/0004-6361:20054185

    Article  ADS  Google Scholar 

  • Bennett, C.L., Larson, D., Weiland, J.L., Jarosik, N., Hinshaw, G., Odegard, N., Smith, K.M., Hill, R.S., Gold, B., Halpern, M., Komatsu, E., Nolta, M.R., Page, L., Spergel, D.N., Wollack, E., Dunkley, J., Kogut, A., Limon, M., Meyer, S.S., Tucker, G.S., Wright, E.L.: Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: final maps and results. Astrophys. J. Suppl. Ser. 208, 19 (2013)

    Article  ADS  Google Scholar 

  • Bolotin, Yu.L., Kostenko, A., Lemets, O.A., Yerokhin, D.A.: Cosmological evolution with interaction between dark energy and dark matter. Int. J. Mod. Phys. D 24, 1530007 (2015). arXiv:1310.0085

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Bond, H.E., et al.: HD 140283: a star in the solar neighborhood that formed shortly after the big bang. Astrophys. J. Lett. 765, L12 (2013). https://doi.org/10.1088/2041-8205/765/1/L12

    Article  ADS  Google Scholar 

  • Cai, R.-G.: A dark energy model characterized by the age of the universe. Phys. Lett. B 657, 228–231 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Cohen, A.G., Kaplan, D.B., Nelson, A.E.: Effective field theory, black holes, and the cosmological constant. Phys. Rev. Lett. 82, 4971–4974 (1999). https://doi.org/10.1103/PhysRevLett.82.4971

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Colgáin, E.Ó., Sheikh-Jabbari, M.M.: A critique of holographic dark energy. Class. Quantum Gravity 38, 177001 (2021). https://doi.org/10.1088/1361-6382/ac1504

    Article  MathSciNet  ADS  Google Scholar 

  • Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006). arXiv:hep-th/0603057

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Cui, J.-L., Zhang, X.: Cosmic age problem revisited in the holographic dark energy model. Phys. Lett. B 690, 233–238 (2010). https://doi.org/10.1016/j.physletb.2010.05.046

    Article  ADS  Google Scholar 

  • del Campo, S., Herrera, R., Olivares, G., Pavón, D.: Interacting models of soft coincidence. Phys. Rev. D 74 (2006)

  • Demianski, M., Piedipalumbo, E., Sawant, D., Amati, L.: Cosmology with gamma-ray bursts: I. The Hubble diagram through the calibrated \(E_{p,i} - E_{iso}\) correlation. Astron. Astrophys. 598, A112 (2017). https://doi.org/10.1051/0004-6361/201628909

    Article  ADS  Google Scholar 

  • Dheepika, M., Mathew, T.K.: Tsallis holographic dark energy reconsidered. Eur. Phys. J. C 82, 399 (2022). https://doi.org/10.1140/epjc/s10052-022-10365-2

    Article  ADS  Google Scholar 

  • Ebrahimi, E., Golchin, H.: Nonlinearly interacting ghost dark energy in Brans–Dicke cosmology. Can. J. Phys. 94 (2016). https://doi.org/10.1139/cjp-2016-0320

  • Ebrahimi, E., Golchin, H., Mehrabi, A., Movahed, S.M.S.: Consistency of nonlinear interacting ghost dark energy with recent observations. Int. J. Mod. Phys. D 26, 1750124 (2017). https://doi.org/10.1142/S0218271817501243

    Article  ADS  Google Scholar 

  • Eisenstein, D.J., Zehavi, I., Hogg, D.W., Scoccimarro, R., Blanton, M.R., Nichol, R.C., Scranton, R., Seo, H.-J., Tegmark, M., Zheng, Zh., Anderson, S.F., Annis, J., Bahcall, N., Brinkmann, J., Burles, S., Castander, F.J., Connolly, A., Csabai, I., Doi, M., Fukugita, M., Frieman, J.A., Glazebrook, K., Gunn, J.E., Hendry, J.S., Hennessy, G., Ivezić, Z., Kent, S., Knapp, G.R., Lin, H., Loh, Y.Sh., Lupton, R.H., Margon, B., McKay, T.A., Meiksin, A., Munn, J.A., Pope, A., Richmond, M.W., Schlegel, D., Schneider, D.P., Shimasaku, K., Stoughton, Ch., Strauss, M.A., SubbaRao, M., Szalay, A.S., Szapudi, I., Tucker, D.L., Yanny, B., York, D.G.: Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560 (2005)

    Article  ADS  Google Scholar 

  • Feizi Mangoudehi, Z.: Interacting Tsallis agegraphic dark energy in DGP braneworld cosmology. Astrophys. Space Sci. 367, 31 (2022). https://doi.org/10.1007/s10509-022-04044-7

    Article  MathSciNet  ADS  Google Scholar 

  • Gao, C., Wu, F., Chen, X., Shen, Y.-G.: Holographic dark energy model from Ricci scalar curvature. Phys. Rev. D 79, 043511 (2009)

    Article  ADS  Google Scholar 

  • George, P.: Holographic Ricci DE as running vacuum with nonlinear interactions (2022). arXiv:2201.06739

  • He, J.-H., Wang, B.: Effects of the interaction between dark energy and dark matter on cosmological parameters. J. Cosmol. Astropart. Phys. 2008, 010 (2008). https://doi.org/10.1088/1475-7516/2008/06/010

    Article  Google Scholar 

  • Huang, Q.-G., Gong, Y.: Supernova constraints on a holographic dark energy model. J. Cosmol. Astropart. Phys. 2004(08), 006 (2004)

    Article  Google Scholar 

  • Huang, Q., et al.: Stability analysis of a Tsallis holographic dark energy model. Class. Quantum Gravity 36, 175001 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Huang, Q., Huang, H., Xu, B., Tu, F., Chen, J.: Dynamical analysis and statefinder of Barrow holographic dark energy. Eur. Phys. J. C 81, 686 (2021). https://doi.org/10.1140/epjc/s10052-021-09480-3

    Article  ADS  Google Scholar 

  • Komatsu, E., Smith, K.M., Dunkley, J., Bennett, C.L., Gold, B., Hinshaw, G., Jarosik, N., Larson, D., Nolta, M.R., Page, L., Spergel, D.N., Halpern, M., Hill, R.S., Kogut, A., Limon, M., Meyer, S.S., Odegard, N., Tucker, G.S., Weiland, J.L., Wollack, E., Wright, E.L.: Seven-year Wilkinson Microwave Anisotropy Probe (WMAP*) observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 192, 18 (2011)

    Article  ADS  Google Scholar 

  • Lee, S., Liu, G.-C., Ng, K.-W.: Constraints on the coupled quintessence from cosmic microwave background anisotropy and matter power spectrum. Phys. Rev. D 73, 083516 (2006). astro-ph/0601333

    Article  ADS  Google Scholar 

  • Li, M.: A model of holographic dark energy. Phys. Lett. B 603, 1 (2004)

    Article  ADS  Google Scholar 

  • Li, M., Li, X.D., Wang, S., Wang, Y.: Dark energy. Commun. Theor. Phys. 56, 525 (2011). arXiv:1103.5870

    Article  MATH  ADS  Google Scholar 

  • Moresco, M.: Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at \(z \sim 2\). Mon. Not. R. Astron. Soc. 450, L16–L20 (2015). https://doi.org/10.1093/mnrasl/slv037

    Article  ADS  Google Scholar 

  • Moresco, M., Cimatti, A., Jimenez, R., Pozzetti, L., Zamorani, G., Bolzonella, M., Dunlop, J., Lamareille, F., Mignoli, M., Pearce, H., Rosati, P., Stern, D., Verde, L., Zucca, E., Carollo, C.M., Contini, T., Kneib, J.-P., Le Fevre, O., Lilly, S.J., Mainieri, V., Renzini, A., Scodeggio, M., Balestra, I., Gobat, R., McLure, R., Bardelli, S., Bongiorno, A., Caputi, K., Cucciati, O., de la Torre, S., de Ravel, L., Franzetti, P., Garilli, B., Iovino, A., Kampczyk, P., Knobel, C., Kovac, K., Le Borgne, J.-F., Le Brun, V., Maier, C., Pelló, R., Peng, Y., Perez-Montero, E., Presotto, V., Silverman, J.D., Tanaka, M., Tasca, L.A.M., Tresse, L., Vergani, D., Almaini, O., Barnes, L., Bordoloi, R., Bradshaw, E., Cappi, A., Chuter, R., Cirasuolo, M., Coppa, G., Diener, C., Foucaud, S., Hartley, W., Kamionkowski, M., Koekemoer, A.M., López-Sanjuan, C., McCracken, H.J., Nair, P., Oesch, P., Stanford, A., Welikala, N.: Improved constraints on the expansion rate of the Universe up to \(z~1.1\) from the spectroscopic evolution of cosmic chronometers. J. Cosmol. Astropart. Phys. 2012(08), 006 (2012). https://doi.org/10.1088/1475-7516/2012/08/006

    Article  Google Scholar 

  • Moresco, M., Pozzetti, L., Cimatti, A., Jimenez, R., Maraston, C., Verde, L., Thomas, D., Citro, A., Tojeiro, R., Wilkinson, D.: A 6% measurement of the Hubble parameter at \(z~0.45\): direct evidence of the epoch of cosmic re-acceleration. J. Cosmol. Astropart. Phys. 2016(05), 014 (2016). https://doi.org/10.1088/1475-7516/2016/05/014

    Article  Google Scholar 

  • Peebles, P.J.E., Ratra, B.: The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559 (2003). https://doi.org/10.1103/RevModPhys.75.559

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Perlmutter, S., Aldering, G., Della Valle, M., Deustua, S., Ellis, R.S., Fabbro, S., Fruchter, A., Goldhaber, G., Groom, D.E., Hook, I.M., Kim, A.G., Kim, M.Y., Knop, R.A., Lidman, C., McMahon, R.G., Nugent, P., Pain, R., Panagia, N., Pennypacker, C.R., Ruiz-Lapuente, P., Schaefer, B., Walton, N.: Discovery of a supernova explosion at half the age of the Universe. Nature 391, 51–54 (1998). https://doi.org/10.1038/34124

    Article  ADS  Google Scholar 

  • Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R.A., Nugent, P., Castro, P.G., Deustua, S., Fabbro, S., Goobar, A., Groom, D.E., Hook, I.M., Kim, A.G., Kim, M.Y., Lee, J.C., Nunes, N.J., Pain, R., Pennypacker, C.R., Quimby, R., Lidman, C., Ellis, R.S., Irwin, M., McMahon, R.G., Ruiz-Lapuente, P., Walton, N., Schaefer, B., Boyle, B.J., Filippenko, A.V., Matheson, T., Fruchter, A.S., Panagia, N., Newberg, H.J.M., Couch, W.J.: Measurements of Omega and Lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999). https://doi.org/10.1086/307221

    Article  MATH  ADS  Google Scholar 

  • Planck Collaboration: Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020). https://doi.org/10.1051/0004-6361/201833910

    Article  Google Scholar 

  • Quartin, M., Calvao, M.O., Joras, S.E., Reis, R.R.R., Waga, I.: Dark interactions and cosmological fine-tuning. J. Cosmol. Astropart. Phys. 2008 (2008)

  • Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P.M., Gilliland, R.L., Hogan, C.J., Jha, S., Kirshner, R.P., Leibundgut, B., Phillips, M.M., Reiss, D., Schmidt, B.P., Schommer, R.A., Smith, R.C., Spyromilio, J., Stubbs, C., Suntzeff, N.B., Tonry, J.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astrophys. J. 116, 1009 (1998). https://doi.org/10.1086/300499

    Article  Google Scholar 

  • Sadri, E.: Observational constraints on interacting Tsallis holographic dark energy model. Eur. Phys. J. C 79, 762 (2019). https://doi.org/10.1140/epjc/s10052-019-7263-9

    Article  ADS  Google Scholar 

  • Sadri, E., Khurshudyan, M., Zeng, Df.: Scrutinizing various phenomenological interactions in the context of holographic Ricci dark energy models. Eur. Phys. J. C 80, 393 (2020). https://doi.org/10.1140/epjc/s10052-020-7983-x

    Article  ADS  Google Scholar 

  • Saha, A., Ghose, S.: Interacting Tsallis holographic dark energy in higher dimensional cosmology. Astrophys. Space Sci. 365, 98 (2020). https://doi.org/10.1007/s10509-020-03812-7

    Article  MathSciNet  ADS  Google Scholar 

  • Sahni, V., Shafieloo, A., Starobinsky, A.A.: Two new diagnostics of dark energy. Phys. Rev. D 78, 103502 (2008). https://doi.org/10.1103/PhysRevD.78.103502

    Article  ADS  Google Scholar 

  • Scolnic, D.M., et al.: The complete light-curve sample of spectroscopically confirmed SNe Ia from Pan-STARRS1 and cosmological constraints from the combined Pantheon sample. Astrophys. J. 859, 101 (2018). https://doi.org/10.3847/1538-4357/aab9bb

    Article  ADS  Google Scholar 

  • Setare, M.R.: New agegraphic dark energy in f(R) gravity. Astrophys. Space Sci. 326, 27–31 (2010). https://doi.org/10.1007/s10509-009-0214-4

    Article  MATH  ADS  Google Scholar 

  • Sharma, U.K., Srivastava, V.: Tsallis HDE with an IR cutoff as Ricci horizon in a flat FLRW universe. New Astron. 84, 101519 (2021). https://doi.org/10.1016/j.newast.2020.101519

    Article  Google Scholar 

  • Sheykhi, A., Sadegh Movahed, M., Ebrahimi, E.: Tachyon reconstruction of ghost dark energy. Astrophys. Space Sci. 339, 93–99 (2012). https://doi.org/10.1007/s10509-012-0977-x

    Article  MATH  ADS  Google Scholar 

  • Simon, J., Verde, L., Jimenez, R.: Constraints on the redshift dependence of the dark energy potential. Phys. Rev. D 71, 123001 (2005). https://doi.org/10.1103/PhysRevD.71.123001

    Article  ADS  Google Scholar 

  • Spergel, D.N., Verde, L., Peiris, H.V., Komatsu, E., Nolta, M.R., Bennett, C.L., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., Meyer, S.S., Page, L., Tucker, G.S., Weiland, J.L., Wollack, E., Wright, E.L.: First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. Ser. 148, 175 (2003)

    Article  ADS  Google Scholar 

  • Spergel, D.N., Bean, R., Doré, O., Nolta, M.R., Bennett, C.L., Dunkley, J., Hinshaw, G., Jarosik, N., Komatsu, E., Page, L., Peiris, H.V., Verde, L., Halpern, M., Hill, R.S., Kogut, A., Limon, M., Meyer, S.S., Odegard, N., Tucker, G.S., Weiland, J.L., Wollack, E., Wright, E.L.: Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications for cosmology. Astrophys. J. Suppl. Ser. 170, 377 (2007)

    Article  ADS  Google Scholar 

  • Stern, D., Jimenez, R., Verde, L., Kamionkowski, M., Stanford, S.A.: Cosmic chronometers: constraining the equation of state of dark energy. I: \(H(z)\) measurements. J. Cosmol. Astropart. Phys. 2010, 008 (2010). https://doi.org/10.1088/1475-7516/2010/02/008

    Article  Google Scholar 

  • Tavayef, M., Sheykhi, A., Bamba, K., Moradpour, H.: Tsallis holographic dark energy. Phys. Lett. B 781, 195–200 (2018). https://doi.org/10.1016/j.physletb.2018.04.001

    Article  ADS  Google Scholar 

  • Tsallis, C., Cirto, L.J.L.: Black hole thermodynamical entropy. Eur. Phys. J. C 73, 2487 (2013). arXiv:1202.2154

    Article  ADS  Google Scholar 

  • Wang, S., Wang, Y.Z., Geng, J.J., et al.: Effects of time-varying \(\beta \) in SNLS3 on constraining interacting dark energy models. Eur. Phys. J. C 74, 3148 (2014). https://doi.org/10.1140/epjc/s10052-014-3148-0

    Article  ADS  Google Scholar 

  • Wang, B., Abdalla, E., Atrio-Barandela, F., Pavon, D.: Dark matter and dark energy interactions: theoretical challenges, cosmological implications and observational signatures. Rep. Prog. Phys. 79, 096901 (2016)

    Article  ADS  Google Scholar 

  • Wei, H., Cai, R.-G.: A new model of agegraphic dark energy. Phys. Lett. B 660, 113–117 (2008). https://doi.org/10.1016/j.physletb.2007.12.030

    Article  ADS  Google Scholar 

  • Wei, H., Zhang, S.N.: Age problem in the holographic dark energy model. Phys. Rev. D 76, 063003 (2007). https://link.aps.org/doi/10.1103/PhysRevD.76.063003

    Article  ADS  Google Scholar 

  • Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989). https://doi.org/10.1103/RevModPhys.61.1

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Yadav, A.K.: Note on Tsallis holographic dark energy in Brans–Dicke cosmology. Eur. Phys. J. C 81, 8 (2021). https://doi.org/10.1140/epjc/s10052-020-08812-z

    Article  ADS  Google Scholar 

  • Zhang, M.J., Liu, W.B.: Observational constraint on the interacting dark energy models including the Sandage–Loeb test. Eur. Phys. J. C 74, 2863 (2014). https://doi.org/10.1140/epjc/s10052-014-2863-x

    Article  ADS  Google Scholar 

  • Zhang, C., Zhang, H., Yuan, S., Liu, S., Zhang, T.-J., Sun, Y.-C.: Four new observational H(z) data from luminous red galaxies of Sloan Digital Sky Survey data release seven. Res. Astron. Astrophys. 14 (2014)

Download references

Acknowledgements

I am incredibly grateful to the dear reviewer for the significant and valuable comments that caused this manuscript to improve considerably.

Funding

This research received no funding.

Author information

Authors and Affiliations

Authors

Contributions

This work was carried out completely by Zahra Feizi Mangoudehi.

Corresponding author

Correspondence to Zahra Feizi Mangoudehi.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing Interests

The author declares that she has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feizi Mangoudehi, Z. Observational constraints on Tsallis holographic dark energy with Ricci horizon cutoff. Astrophys Space Sci 367, 115 (2022). https://doi.org/10.1007/s10509-022-04154-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-022-04154-2

Keywords

Navigation