Skip to main content
Log in

A new model of quasar mass evolution

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Magnetic monopoles have been a trending topic among physicists and astronomers since the 1930s. Researchers have been working hard to find evidence of magnetic monopoles in laboratories. The existence of magnetic monopoles can rationally explain the stability of charges, the quantization of charges, the structure of leptons, the unified composition of leptons and hadrons, and the symmetry of leptons and quarks. The presence of these mysterious particles in the universe could have significant implications for theoretical physics and astrophysics. The Grand Unified Theory has also predicted the existence of magnetic monopoles, which is interestingly implied by some astronomical observations. Noticing that the growth of supermassive black holes in the early universe is an increasingly challenging difficulty faced by astronomers, here we argue that it could be solved with the help of magnetic monopoles. As suggested by Peng et al. in A Monopole Model for Galactic Nuclei. In: Structure and Evolution of Active Galactic Nuclei, vol. 121, p. 663 (1986), quasars containing magnetic monopoles at the center can continuously catalyze the decay of protons to release energy. We examine this model by using quasar data from the Sloan digital sky survey. It is shown that the initial mass distribution of quasars derived from the magnetic monopole model exhibits a Gaussian distribution. At the same time, the initial mass function is also slightly higher than previously expected, which could be verified by future observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The quasar data used in this article is from (Shen et al. 2011).

References

  • Abazajian, K.N., Adelman-McCarthy, J.K., Agüeros, M.A., et al.: The seventh data release of the Sloan Digital Sky Survey. Astrophys. J. Suppl. Ser. 182(2), 543–558 (2009)

    Article  ADS  Google Scholar 

  • Abel, T., Bryan, G.L., Norman, M.L.: The formation of the first star in the Universe. Science 295, 93–98 (2002)

    Article  ADS  Google Scholar 

  • Avni, Y., Soltan, A., Tananbaum, H., Zamorani, G.: A method for determining luminosity functions incorporating both flux measurements and flux upper limits, with applications to the average X-ray to optical luminosity ratio for quasars. Astrophys. J. 238, 800–807 (1980)

    Article  ADS  Google Scholar 

  • Baganoff, F.K., Maeda, Y., Morris, M., et al.: Chandra X-ray spectroscopic imaging of Sagittarius A* and the central parsec of the galaxy. Astrophys. J. 591(2), 891–915 (2003)

    Article  ADS  Google Scholar 

  • Bañados, E., Venemans, B.P., Mazzucchelli, C., et al.: An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5. Nature 553, 473–476 (2018)

    Article  ADS  Google Scholar 

  • Boekholt, T.C.N., Schleicher, D.R.G., Fellhauer, M., et al.: Formation of massive seed black holes via collisions and accretion. Mon. Not. R. Astron. Soc. 476(1), 366–380 (2018)

    Article  ADS  Google Scholar 

  • Bromm, V., Coppi, P.S., Larson, R.B.: The formation of the first stars. I. The primordial star-forming cloud. Astrophys. J. 564, 23–51 (2002)

    Article  ADS  Google Scholar 

  • Callan, C.G.: Disappearing dyons. Phys. Rev. D 25, 2141–2146 (1982)

    Article  ADS  Google Scholar 

  • Eatough, R.P., Falcke, H., Karuppusamy, R., et al.: A strong magnetic field around the supermassive black hole at the centre of the galaxy. Nature 501(7467), 391–394 (2013)

    Article  ADS  Google Scholar 

  • Fan, X., Barth, A., Banados, E., et al.: The first luminous quasars and their host galaxies (2019). arXiv:1903.04078

  • Friedmann, A.: Über die Krümmung des Raumes. Z. Phys. 10, 377–386 (1922)

    Article  ADS  MATH  Google Scholar 

  • Goulding, A.D., Greene, J.E., Bezanson, R., et al.: Galaxy interactions trigger rapid black hole growth: an unprecedented view from the Hyper Suprime-Cam survey. Publ. Astron. Soc. Jpn. 70, S37 (2018)

    Article  Google Scholar 

  • Graham, A.W., Onken, C.A., Athanassoula, E., Combes, F.: An expanded M\(_{bh}\)-\(\sigma \) diagram, and a new calibration of active galactic nuclei masses. Mon. Not. R. Astron. Soc. 412, 2211–2228 (2011)

    Article  ADS  Google Scholar 

  • Guth, A.H.: 10 to the -35 seconds after the Big Bang. In: Audouze, J., van Tran Thanh, J. (eds.) The Birth of the Universe, pp. 25–43 (1982)

    Google Scholar 

  • Haiman, Z.: The formation of the first massive black holes. In: Wiklind, T., Mobasher, B., Bromm, V. (eds.) The First Galaxies. Astrophysics and Space Science Library, vol. 396, p. 293 (2013)

    Chapter  Google Scholar 

  • Hewett, P.C., Foltz, C.B., Chaffee, F.H.: The large bright quasar survey. 6: quasar catalog and survey parameters. Astron. J. 109, 1498–1521 (1995)

    Article  ADS  Google Scholar 

  • Hopkins, P.F., Hernquist, L., et al.: Black holes in galaxy mergers: evolution of quasars. Astrophys. J. 630(2), 705–715 (2005)

    Article  ADS  Google Scholar 

  • Hopkins, P.F., Hernquist, L., et al.: A unified, merger-driven model of the origin of starbursts, quasars, the cosmic X-ray background, supermassive black holes, and galaxy spheroids. Astrophys. J. Suppl. Ser. 163(1), 1–49 (2006)

    Article  ADS  Google Scholar 

  • Jiang, L., Fan, X., Hines, D.C., Shi, Y., et al.: Probing the evolution of infrared properties of \(z \sim 6\) quasars: Spitzer observations. Astron. J. 132, 2127–2134 (2006)

    Article  ADS  Google Scholar 

  • Jun, H.D., Im, M., Lee, H.M., et al.: Rest-frame optical spectra and black hole masses of \(3 < z < 6\) quasars. Astrophys. J. 806, 109 (2015)

    Article  ADS  Google Scholar 

  • Kato, S., Fukue, J., Mineshige, S.: Black-Hole Accretion Disks (1998)

    Google Scholar 

  • Kennefick, J., Bursick, S.: Infrared imaging of sloan digital sky survey quasars: implications for the quasar K correction. Astron. J. 136(5), 1799–1809 (2008)

    Article  ADS  Google Scholar 

  • Kim, Y., Im, M., Jeon, Y., et al.: The infrared medium-deep survey. IV. The low Eddington ratio of a faint quasar at z ∼ 6: not every supermassive black hole is growing fast in the early Universe. Astrophys. J. 855, 138 (2018)

    Article  ADS  Google Scholar 

  • Knödlseder, J., Lonjou, V., Jean, P., et al.: Early SPI/INTEGRAL constraints on the morphology of the 511 keV line emission in the 4th galactic quadrant. Astron. Astrophys. 411, L457–L460 (2003)

    Article  ADS  Google Scholar 

  • Kormendy, J., Gebhardt, K.: Supermassive black holes in galactic nuclei. In: Wheeler, J.C., Martel, H. (eds.) 20th Texas Symposium on Relativistic Astrophysics. American Institute of Physics Conference Series, vol. 586, pp. 363–381 (2001)

    Google Scholar 

  • Kormendy, J., Ho, L.C.: Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511–653 (2013)

    Article  ADS  Google Scholar 

  • Kormendy, J., Richstone, D.: Inward bound—the search for supermassive black holes in galactic nuclei. Annu. Rev. Astron. Astrophys. 33, 581 (1995)

    Article  ADS  Google Scholar 

  • Kurk, J.D., Walter, F., Fan, X., et al.: Near-infrared spectroscopy of SDSS J0303 - 0019: a low-luminosity, high-Eddington-ratio quasar at z ∼ 6. Astrophys. J. 702, 833–837 (2009)

    Article  ADS  Google Scholar 

  • Lezhnin, K., Vasiliev, E.: Evolution of supermassive black hole binaries and tidal disruption rates in non-spherical galactic nuclei. Mon. Not. R. Astron. Soc. 484, 2851–2865 (2019)

    Article  ADS  Google Scholar 

  • Li, Y.-R., Wang, J.-M., Ho, L.C.: Cosmological evolution of supermassive black holes. II. Evidence for downsizing of spin evolution. Astrophys. J. 749(2), 187 (2012)

    Article  ADS  Google Scholar 

  • Lian, B., Lou, Y.-Q.: Relativistic self-similar dynamic collapses of black holes in general polytropic spherical clouds. Mon. Not. R. Astron. Soc. 438(2), 1242–1255 (2014)

    Article  ADS  Google Scholar 

  • Ma, L., Hopkins, P.F., Ma, X., et al.: Seeds don’t sink: even massive black hole ‘seeds’ cannot migrate to galaxy centres efficiently. Mon. Not. R. Astron. Soc. 508(2), 1973–1985 (2021)

    Article  ADS  Google Scholar 

  • Marrone, D.P., Spilker, J.S., Hayward, C.C., et al.: Galaxy growth in a massive halo in the first billion years of cosmic history. Nature 553, 51–54 (2018)

    Article  ADS  Google Scholar 

  • Matsuoka, Y., Onoue, M., Kashikawa, N., et al.: Subaru high-z exploration of low-luminosity quasars (SHELLQs). I. Discovery of 15 quasars and bright galaxies at \(5.7 < z < 6.9\). Astrophys. J. 828, 26 (2016)

    Article  ADS  Google Scholar 

  • Mazzucchelli, C., Bañados, E., Venemans, B.P., et al.: Physical properties of 15 quasars at z ≳ 6.5. Astrophys. J. 849, 91 (2017)

    Article  ADS  Google Scholar 

  • McAlpine, S., Bower, R.G., Rosario, D.J., Crain, R.A., et al.: The rapid growth phase of supermassive black holes. Mon. Not. R. Astron. Soc. 481, 3118–3128 (2018)

    Article  ADS  Google Scholar 

  • McConnell, N.J., Ma, C.-P.: Revisiting the scaling relations of black hole masses and host galaxy properties. Astrophys. J. 764, 184 (2013)

    Article  ADS  Google Scholar 

  • McConnell, N.J., Ma, C.-P., Gebhardt, K., et al.: Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies. Nature 480, 215–218 (2011)

    Article  ADS  Google Scholar 

  • Netzer, H.: The Physics and Evolution of Active Galactic Nuclei (2013)

    Book  Google Scholar 

  • Peng, Q.-H., Chou, C.-K.: A model of quasars and AGNs with magnetic monopoles. Astrophys. Space Sci. 257(1), 149–159 (1997)

    Article  ADS  MATH  Google Scholar 

  • Peng, Q., Chou, C.: A model of quasars and AGNs with magnetic monopoles. In: Byun, Y.I., Ng, K.W. (eds.) Cosmic Microwave Background and Large Scale Structure of the Universe. Astronomical Society of the Pacific Conference Series, vol. 151, p. 119 (1998)

    Google Scholar 

  • Peng, Q-h., Chou, C-k.: High-energy radiation from a model of quasars, active galactic nuclei, and the galactic center with magnetic monopoles. Astrophys. J. Lett. 551, L23–L26 (2001)

    Article  ADS  Google Scholar 

  • Peng, Q.H., Wang, D.Y., Li, Z.Y.: A monopole model for galactic nuclei. Kexue Tongbao 30(8), 1056–1061 (1985)

    ADS  Google Scholar 

  • Peng, Q., Wang, D., Li, Z.: A monopole model for galactic nuclei. In: Structure and Evolution of Active Galactic Nuclei, vol. 121, p. 663. (1986)

    Chapter  Google Scholar 

  • Rubakov, V.A.: Superheavy magnetic monopoles and decay of the proton. ZhETF Pisma Redaktsiiu 33, 658–660 (1981)

    ADS  Google Scholar 

  • Rubakov, V.: Adler-Bell-Jackiw anomaly and fermion-number breaking in the presence of a magnetic monopole. Nucl. Phys. B 203(2), 311–348 (1982)

    Article  ADS  Google Scholar 

  • Rubakov, V.A.: Review article: monopole catalysis of proton decay. Rep. Prog. Phys. 51(2), 189–241 (1988)

    Article  ADS  Google Scholar 

  • Rubakov, V., Serebryakov, M.: Anomalous baryon number non-conservation in the presence of SU(5) monopoles. Nucl. Phys. B 218(1), 240–268 (1983)

    Article  ADS  Google Scholar 

  • Salviander, S.T.: Demographics and evolution of supermassive black holes in quasars and galaxies. PhD thesis, The University of Texas at Austin (2008)

  • Schmidt, M.: 3C 273: a star-like object with large red-shift. Nature 197, 1040 (1963)

    Article  ADS  Google Scholar 

  • Schmidt, M., Green, R.F.: Quasar evolution derived from the Palomar bright quasar survey and other complete quasar surveys. Astrophys. J. 269, 352–374 (1983)

    Article  ADS  Google Scholar 

  • Schneider, D.P., Richards, G.T., Hall, P.B., et al.: The Sloan Digital Sky Survey Quasar Catalog. V. Seventh data release. Astron. J. 139(6), 2360 (2010)

    Article  ADS  Google Scholar 

  • Shang, C., Bryan, G.L., Haiman, Z.: Supermassive black hole formation by direct collapse: keeping protogalactic gas H2 free in dark matter haloes with virial temperatures \(T_{\text{vir}}> \gtrsim 10^{4}\) K. Mon. Not. R. Astron. Soc. 402(2), 1249–1262 (2010)

    Article  ADS  Google Scholar 

  • Shen, Y., Richards, G.T., Strauss, M.A., et al.: A catalog of quasar properties from Sloan Digital Sky Survey data release 7. Astrophys. J. Suppl. Ser. 194, 45 (2011)

    Article  ADS  Google Scholar 

  • Shirakata, H., Kawaguchi, T., Okamoto, T., et al.: Withdrawn as duplicate: theoretical reevaluations of the black hole mass - bulge mass relation - I. Effect of the seed black hole mass. Mon. Not. R. Astron. Soc. 484, L97–L97 (2019)

    Article  Google Scholar 

  • Smole, M., Micic, M., Martinović, N.: SMBH growth parameters in the early Universe of Millennium and Millennium-II simulations. Mon. Not. R. Astron. Soc. 451, 1964–1972 (2015)

    Article  ADS  Google Scholar 

  • Somerville, R.S., Hopkins, P.F., Cox, T.J., et al.: A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei. Mon. Not. R. Astron. Soc. 391(2), 481–506 (2008)

    Article  ADS  Google Scholar 

  • Tempel, E., Tamm, A., Gramann, M., et al.: Flux- and volume-limited groups/clusters for the SDSS galaxies: catalogues and mass estimation. Astron. Astrophys. 566, A1 (2014)

    Article  Google Scholar 

  • Vestergaard, M.: Early growth and efficient accretion of massive black holes at high redshift. Astrophys. J. 601, 676–691 (2004)

    Article  ADS  Google Scholar 

  • Wu, X.-B., Wang, F., Fan, X., et al.: An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30. Nature 518, 512–515 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee for useful comments and suggestions. The authors are thankful for beneficial discussions with Professor Yong-Feng Huang. We also thank Nanjing University and Purple Mountain Observatory for valuable support.

Funding

This work was supported by the Regional Collaborative Innovation Project of Xinjiang Uyghur Autonomous Region (2022E01013), the National Natural Science Foundation of China (12173078 and 11773062), and the West Light Foundation of the Chinese Academy of Sciences (2017-XBQNXZ-A-008).

Author information

Authors and Affiliations

Authors

Contributions

Zheng Li is the Principal Investigator and the corresponding author. Other authors contributed to the interpretation of the results.

Corresponding author

Correspondence to Zheng Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhang, M., Peng, QH. et al. A new model of quasar mass evolution. Astrophys Space Sci 367, 71 (2022). https://doi.org/10.1007/s10509-022-04101-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-022-04101-1

Keywords

Navigation