Skip to main content

Advertisement

Log in

High-latitude mesospheric intense turbulence associated with high-speed solar wind streams

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Intense turbulence is frequently observed in the polar mesosphere summer echoes (PMSE) from the data of very high frequency radar operating at Esrange, Sweden. The turbulence can be estimated from the turbulent energy dissipation rate (\(\epsilon \)) by considering aspect sensitivity. We find that variation in turbulence at altitude 82–86 km is in a good correlation with enhanced geomagnetic disturbances and precipitating energetic electrons into the mesosphere induced by high-speed solar wind streams. In addition, intense turbulence (a few tens of mW/kg) frequently occurs in the common volume with large plasma/neutral horizontal speeds (\(\geq 150~\text{m}\,\text{s}^{-1}\)) at 82–90 km altitudes. The large velocities are ready to form wind shear/shift. Therefore, we suggest that the summer mesospheric turbulence is to a significant extent accompanied by large plasma/neutral velocities and wind shear in the mesosphere, in turn linked to solar wind energy input during geomagnetic disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berger, U., von Zahn, U.: The two-level structure of the mesopause: a model study. J. Geophys. Res. 104, 22083–22093 (1999). https://doi.org/10.1029/1999JD900389

    Article  ADS  Google Scholar 

  • Bluestein, H.B.: Observations and Theory of Weather Systems. Vol. 2, Synoptic–Dynamic Meteorology in Midlatitudes p. 246. Oxford University Press, London (1993)

    Google Scholar 

  • Briggs, B.H.: The analysis of spaced sensor records by correlation techniques. In: Handbook for MAP. SCOSTEP Secr., vol. 13, pp. 166–186. University of Illinois, Urbana (1984)

    Google Scholar 

  • Briggs, B.H., Phillips, G.J., Shinn, D.H.: The analysis of observations on spaced receivers of the fading of radio signals. Proc. Phys. Soc. 63B, 106–121 (1950)

    Article  ADS  Google Scholar 

  • Cerisier, J.-C., Marchaudon, A., Bosqued, J.-M., McWilliams, K., Frey, H.U., Bouhram, M., Laakso, H., Dunlop, M., Fo¨ rster, M., Fazakerley, A.: Ionospheric signatures of plasma injections in the cusp triggered by solar wind pressure pulses. J. Geophys. Res. 110, A08204 (2005). https://doi.org/10.1029/2004JA010962

    Article  ADS  Google Scholar 

  • Cho, J.Y.N., Röttger, J.: An updated review of polar mesosphere summer echoes: observation, theory, and their relationship to noctilucent clouds and subvisible aerosols. J. Geophys. Res. 102, 2001–2020 (1997)

    Article  ADS  Google Scholar 

  • Clark, T.L., Hall William, D., Kerr, R.M., Middleton, D., Radke, L., et al.: Origins of aircraft-damaging clear-air turbulence during the 9 December 1992 Colorado downslope windstorm: numerical simulations and comparison with observations. J. Atmos. Sci. 57, 1105–1131 (2000)

    Article  ADS  Google Scholar 

  • Craven, J.D., Frank, L.A., Russell, C.T., Smith, E.J., Lepping, R.P.: Global auroral responses to magnetospheric compressions by shocks in the solar wind: two case studies. In: Kamide, Y., Slavin, J.A. (eds.) Solar Wind-Magnetosphere Coupling, pp. 367–380. Terra Scientific Publishing Co., Tokyo (1986)

    Chapter  Google Scholar 

  • Engler, N., Latteck, R., Strelnikov, B., Singer, B., Rapp, M.: Turbulent energy dissipation rates observed by Doppler MST radar and by rocket-borne instruments during the MIDAS/MacWAVE campaign 2002. Ann. Geophys. 23, 1147–1156 (2005)

    Article  ADS  Google Scholar 

  • Fritts, D.C., Smith, S.A., Ben Balsley, B., Philbrick, C.R.: Evidence of gravity wave saturation and local turbulence production in the summer mesosphere and lower thermosphere during the STATE experiment. J. Geophys. Res. 93, 7015–7025 (1988)

    Article  ADS  Google Scholar 

  • Fritts, D.C., Wang, L., Geller, M.A., Lawrence, D.A., Werne, J., Balsley, B.B.: Numerical modeling of multiscale dynamics at a high Reynolds number: instabilities, turbulence, and an assessment of Ozmidov and Thorpe Scales. J. Atmos. Sci. 73, 555–578 (2016)

    Article  ADS  Google Scholar 

  • Garcia, R.R.: Dynamics, radiation, and photochemistry in the mesosphere: implications for the formation of noctilucent clouds. J. Geophys. Res. 94, 14,605–14,615 (1989)

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Guarnieri, F.L., Clua-Gonzalez, A.L., Echer, E., Alves, M.V., Ogino, T., Tsurutani, B.T.: Magnetospheric energetics during HILDCAAs. In: Recurrent Magnetic Storms: Corotating Solar Wind Streams. Geophys. Monogr. Ser., vol. 167, p. 175. Am. Geophys. Union, Washington (2006)

    Chapter  Google Scholar 

  • Gorin, J.D., Koustov, A.V., Makarevich, R.A., St.-Maurice, J.-P., Nozawa, S.: Velocity of E-region HF echoes under strongly-driven electrojet conditions. Ann. Geophys. 30, 235–250 (2012)

    Article  ADS  Google Scholar 

  • Hall, C.M., Aso, T.: Identification of possible ion-drag induced neutral instability in the lower thermosphere over Svalbard. Earth Planets Space 52, 639–643 (2000)

    Article  ADS  Google Scholar 

  • Hall, C.M., Hoppe, U.-P., Blix, T.A., Thrane, E.V., Manson, A.H., Meek, C.E.: Seasonal variation of turbulent energy dissipation rates in the polar mesosphere: a comparison of methods. Earth Planets Space 51, 515–524 (1999)

    Article  ADS  Google Scholar 

  • Hall, C.M., Aso, T., Tsutsumi, M.: Atmospheric stability at 90 km, 78 °N, 16 °E. Earth Planets Space 59, 157–164 (2007)

    Article  ADS  Google Scholar 

  • Heelis, R.: Electrodynamics in the low and middle latitude ionosphere: a tutorial. J. Atmos. Sol.-Terr. Phys. 66, 825–838 (2004)

    Article  ADS  Google Scholar 

  • Hocking, W.K.: On the extraction of atmospheric turbulence parameters from radar backscatter Doppler spectra—I. Theory. J. Atmos. Terr. Phys. 45(2/3), 89–102 (1983)

    Article  ADS  Google Scholar 

  • Hocking, W.K., Ruster, R., Czechowsky, P.: Absolute reflectivities and aspect sensitivities of VHF radio wave scatterers measured with the SOUSY radar. J. Atmos. Terr. Phys. 48, 131–144 (1986)

    Article  ADS  Google Scholar 

  • Holdsworth, D.A., Vincent, R.A., Reid, I.M.: Mesospheric turbulent velocity estimation using the Buckland Park MF radar. Ann. Geophys. 19, 1007–1017 (2001)

    Article  ADS  Google Scholar 

  • Kirkwood, S., Wolf, I., Nilsson, H., Dalin, P., Mikhaylova, D., Belova, E.: Polar mesosphere summer echoes at Wasa, Antarctica (73 °S): First observations and comparison with 68 °N. Geophys. Res. Lett. 34, L15803 (2007). https://doi.org/10.1029/2007GL030516

    Article  ADS  Google Scholar 

  • Latteck, R., Singer, W., Hocking, W.H.: Measurement of turbulent kinetic energy dissipation rates in the mesosphere by a 3 MHz Doppler radar. Adv. Space Res. 35, 1905–1910 (2005)

    Article  ADS  Google Scholar 

  • Lee, Y.-S., Shepherd, G.G.: Summer high-latitude mesospheric observations of supersonic bursts and O(1S) emission rate with the UARS WINDII instrument and the association with sprites, meteors, and lightning. J. Geophys. Res. 115, A00E26 (2010). https://doi.org/10.1029/2009JA014731

    Article  Google Scholar 

  • Lee, Y.-S., Kirkwood, S., Shepherd, G.G., Kwak, Y.-S., Kim, K.-C.: Long-periodic strong radar echoes in the summer polar D region correlated with oscillations of high-speed solar wind streams. Geophys. Res. Lett. 40, 4160–4164 (2013). https://doi.org/10.1002/grl.50821

    Article  ADS  Google Scholar 

  • Lee, Y.-S., Kirkwood, S., Kwak, Y.-S., Kim, K.-C., Shepherd, G.G.: Polar summer mesospheric extreme horizontal drift speeds during interplanetary corotating interaction regions (CIRs) and high-speed solar wind streams: coupling between the solar wind and the mesosphere. J. Geophys. Res. Space Phys. 119, 3883–3894 (2014). https://doi.org/10.1002/2014JA019790

    Article  ADS  Google Scholar 

  • Lee, Y.-S., Kwak, Y.-S., Kim, K.-C., Solheim, B., Lee, R., Lee, J.: Observation of atomic oxygen O(1S) green-line speed solar wind streams. J. Geophys. Res. Space Phys. 121, 1042–1054 (2016). https://doi.org/10.1002/2016JA023413

    Article  Google Scholar 

  • Lee, Y.-S., Kim, Y.H., Kim, K.-C., Kwak, Y.-S., Sergienko, T., Kirkwood, S., Johnsen, M.G.: EISCAT observation of wave-like fluctuations in vertical velocity of polar mesospheric summer echoes associated with a geomagnetic disturbance. J. Geophys. Res. Space Phys. 123, 5182–5194 (2018). https://doi.org/10.1029/2018JA025399

    Article  ADS  Google Scholar 

  • Lei, J., Thayer, J.P., Forbes, J.M., Sutton, E.K., Nerem, R.S., et al.: Global thermospheric density variations caused by high-speed solar wind streams during the declining phase of solar cycle 23. J. Geophys. Res. 113, A11303 (2008). https://doi.org/10.1029/2008JA013433

    Article  ADS  Google Scholar 

  • Liu, A., Hocking, W., Franke, S., Thayaparan, T.: Comparison of Na lidar and meteor radar wind measurements at Starfire Opical Range, NM, USA. J. Atmos. Sol.-Terr. Phys. 64, 31–40 (2002)

    Article  ADS  Google Scholar 

  • Lubken, F.-J.: Seasonal variation of turbulent energy dissipation rates at high latitudes as determined by in situ measurements of neutral density fluctuations. J. Geophys. Res. 102(D12), 13441–13456 (1997)

    Article  ADS  Google Scholar 

  • Mann, I., Häggström, I., Tjulin, A., Rostami, S., Anyairo, C.C., Dalin, P.: First wind shear observation in PMSE with the tristatic EISCAT VHF radar. J. Geophys. Res. Space Phys. 121, 11,271–11,281 (2016). https://doi.org/10.1002/2016JA023080

    Article  Google Scholar 

  • Rapp, M., Lübken, F.-J.: On the nature of PMSE: electron diffusion in the vicinity of charged particles revisited. J. Geophys. Res. 108(D8), 8437 (2003). https://doi.org/10.1029/2002JD002857

    Article  Google Scholar 

  • Rapp, M., Lübken, F.-J.: Polar mesosphere summer echoes (PMSE): review of observations and current understanding. Atmos. Chem. Phys. 4, 2601–2633 (2004)

    Article  ADS  Google Scholar 

  • Rapp, M., Strelnikov, B., Müllemann, A., Lübken, F.-J., Fritts, D.C.: Turbulence measurements and implications for gravity wave dissipation during the MaCWAVE/MIDAS rocket program. Geophys. Res. Lett. 31, L24S07 (2004). https://doi.org/10.1029/2003GL019325

    Article  Google Scholar 

  • Sinnhuber, M., Nieder, H., Wieters, N.: Energetic particle precipitation and the chemistry of the mesosphere/lower thermosphere. Surv. Geophys. 33, 1281–1334 (2012)

    Article  ADS  Google Scholar 

  • Smirnova, M., Belova, E., Kirkwood, S.: Aspect sensitivity of polar mesosphere summer echoes based on ESRAD MST radar measurements in Kiruna, Sweden in 1997–2010. Ann. Geophys. 30, 457–465 (2012)

    Article  ADS  Google Scholar 

  • Smith, E.J., Wolfe, J.H.: Observations of interaction regions and corotating shocks between one and five AU: Pioneers 10 and 11. Geophys. Res. Lett. 3, 137–140 (1976). https://doi.org/10.1029/GL003i003p00137

    Article  ADS  Google Scholar 

  • Smith, S.A., Fritts, D.C., VanZandt, T.E.: Evidence for a saturated spectrum of atmospheric gravity waves. J. Atmos. Sci. 44, 1404–1410 (1987)

    Article  ADS  Google Scholar 

  • Sommer, S., Chau, J.L., Schult, C.: On high time-range resolution observations of PMSE: statistical characteristics. J. Geophys. Res., Atmos. 121, 6713–6722 (2016)

    Article  ADS  Google Scholar 

  • Spanswick, E., Donovan, E., Baker, G.: Pc5 modulation of high energy electron precipitation: particle interaction regions and scattering efficiency. Ann. Geophys. 23, 1533–1542 (2005)

    Article  ADS  Google Scholar 

  • Takahashi, K., Ukhorskiy, A.Y.: Solar wind control of Pc5 pulsation power at geosynchronous orbit. J. Geophys. Res. 112, A11205 (2007). https://doi.org/10.1029/2007JA012483

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Tang, F., Arballo, J.K., Okada, M.: Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. J. Geophys. Res. 100(A11), 21717–21733 (1995). https://doi.org/10.1029/95JA01476

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Guarnieri, F.L., Gopalswamy, N., et al.: Corotating solar wind streams and recurrent geomagnetic activity: a review. J. Geophys. Res. 111, A07S01 (2006). https://doi.org/10.1029/2005JA011273

    Article  Google Scholar 

  • Tsurutani, B.T., Hajra, R., Tanimori, T., Takada, A., Bhanu, R., Mannucci, A.J., Lakhina, G.S., et al.: Heliospheric plasma sheet (HPS) impingement onto the magnetosphere as a cause of relativistic electron dropouts (REDs) via coherent EMIC wave scattering with possible consequences for climate change mechanisms. J. Geophys. Res. Space Phys. 121, 10,130–10,156 (2016). https://doi.org/10.1002/2016JA022499

    Article  Google Scholar 

  • Wüst, S., Bittner, M., Yee, J.-H., Mlynczak, M.G., Russell, J.M. III: Variability of the Brunt–Väisälä frequency at the OH* layer height. Atmos. Meas. Tech. 10, 4895–4903 (2017)

    Article  Google Scholar 

  • Yi, W., Reid, I.M., Xue, X., Younger, J.P., Murphy, D.J., et al.: Response of neutral mesospheric density to geomagnetic forcing. Geophys. Res. Lett. 44, 8647–8655 (2017a). https://doi.org/10.1002/2017GL074813

    Article  ADS  Google Scholar 

  • Yi, W., Reid, I.M., Xue, X., Younger, J.P., Spargo, A.J., et al.: First observation of mesosphere response to the solar wind high-speed streams. J. Geophys. Res. Space Phys. 122, 9080–9088 (2017b). https://doi.org/10.1002/2017JA024446

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science & ICT (2018M1A3A3A02066015). ESRAD is a joint venture between the Swedish Institute of Space Physics and the Swedish Space Corporation (Esrange, Sweden). We thank Professor Sheila Kirkwood for providing invaluable comments and discussions in retrieving fruitful results from the ESRAD data. We thank GSFC/SPDF OMNIWeb for the provision of the solar wind parameters and geomagnetic activity indices used in this study. The authors also would like to express their appreciation of the National Centre for Environmental Information of the National Oceanic and Atmospheric Administration (NOAA) for granting permission to use the MEPED data on the POES, which was downloaded from http://satdat.ngdc.noaa.gov/sem/poes/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Sook Lee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YS., Kim, KC., Kwak, YS. et al. High-latitude mesospheric intense turbulence associated with high-speed solar wind streams. Astrophys Space Sci 364, 210 (2019). https://doi.org/10.1007/s10509-019-3691-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-019-3691-0

Keywords

Navigation