Skip to main content

Advertisement

Log in

A two-fluid modeling of kinetic Alfvén wave turbulence

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

We present an analytical model to explore the magnetic field turbulent spectrum by coupled high-frequency kinetic Alfvén wave (KAW) and slow mode of Alfvén wave (AW). The spectrum is computed as a realization of energy cascades from larger to smaller scales for a specific case of solar wind plasma at 1 AU. A two-fluid technique is implemented for the derivation of model equations leading two wave modes. These coupled, nonlinear equations are solved numerically. The nonlinearity in the system arises due to nonlinear ponderomotive force, which is believed to be responsible for the wave localization and magnetic islands formation. The numerical results show that the magnetic islands grow with time and attain a quasi-steady state after the modulation instability is saturated. The magnetic field spectrum and associated spectral indices are computed near the time of saturation of instability. The simulated spectrum in dispersion region follows a power-law with an index of −2.5. The steeper spectrum could be attributed as energy transfer from larger to smaller scales and helps to study turbulence in solar wind. The magnetic field spectrum and spectral index show a good agreement with the observation of solar wind turbulent spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexandrova, O., Carbone, V., Veltri, P., Sorriso-Valvo, L.: Small-scale energy cascade of the solar wind turbulence. Astrophys. J. 674, 1153 (2008)

    Article  ADS  Google Scholar 

  • Alexandrova, O., Lacombe, C., Mangeney, A., Grappin, R., Maksimovic, M.: Solar wind turbulent spectrum at plasma kinetic scales. Astrophys. J. 760, 121 (2012)

    Article  ADS  Google Scholar 

  • Bale, S.D., Kellogg, P.J., Mozer, F.S., Horbury, T.S., Reme, H.: Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 94, 215002 (2005)

    Article  ADS  Google Scholar 

  • Bellan, P.M., Stasiewicz, K.: Fine-scale cavitation of ionospheric plasma caused by inertial Alfvén wave ponderomotive force. Phys. Rev. Lett. 80, 3523 (1998)

    Article  ADS  Google Scholar 

  • Chen, C.H.K., Salem, C.S., Bonnell, J.W., Mozer, F.S., Bale, S.D.: Density fluctuation spectrum of solar wind turbulence between ion and electron scales. Phys. Rev. Lett. 109, 035001 (2012)

    Article  ADS  Google Scholar 

  • Das, B.K., Kumar, S., Sharma, R.P.: Nonlinear interaction of kinetic Alfvén waves with slow Alfvén waves and application to solar wind. Phys. Scr. 85, 035501 (2012)

    Article  ADS  Google Scholar 

  • Dwivedi, N.K., Batra, K., Sharma, R.P.: Study of kinetic Alfvén wave and whistler wave spectra and their implication in solar wind plasma. J. Geophys. Res. 117, A07201 (2012)

    Article  ADS  Google Scholar 

  • Frisch, U.: Turbulence: The Legacy of A.N. Kolmogorov. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  • Gary, S.P., Saito, S., Li, H.: Cascade of whistler turbulence: particle-in-cell simulations. Geophys. Res. Lett. 35, L02104 (2008)

    Article  ADS  Google Scholar 

  • Howes, G.G., TenBarge, J.M., Dorland, W., Quataert, E., Schekochihin, A.A., Numata, R., Tatsuno, T.: Gyrokinetic simulations of solar wind turbulence from ion to electron scales. Phys. Rev. Lett. 107, 035004 (2011)

    Article  ADS  Google Scholar 

  • Kolmogorov, A.N.: Dokl. Akad. Nauk SSSR 30, 9 (1941)

    Google Scholar 

  • Kumar, S., Sharma, R.P., Moon, Y.-J.: Small-scale solar wind turbulence due to nonlinear Alfvén waves. Astrophys. J. 812, 69 (2015)

    Article  ADS  Google Scholar 

  • Leamon, R.J., Matthaeus, W.H., Smith, C.W., Wong, H.K.: Contribution of cyclotron-resonant damping to kinetic dissipation of interplanetary turbulence. Astrophys. J. Lett. 507, L181 (1998a)

    Article  ADS  Google Scholar 

  • Leamon, R.J., Smith, C.W., Ness, N.F., Matthaeus, W.H., Wong, H.K.: Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res. 103, 4775 (1998b)

    Article  ADS  Google Scholar 

  • Leamon, R.J., Smith, C.W., Ness, N.F., Wong, H.K.: Dissipation range dynamics: kinetic Alfvén waves and the importance of \(\beta\) e. J. Geophys. Res. 104, 22331 (1999)

    Article  ADS  Google Scholar 

  • Malik, M., Sharma, R.P., Singh, H.D.: Ion-acoustic wave generation by two kinetic Alfven waves and particle heating. Sol. Phys. 241, 317 (2007)

    Article  ADS  Google Scholar 

  • Meyrand, R., Galtier, S.: Spontaneous chiral symmetry breaking of hall magnetohydrodynamic turbulence. Phys. Rev. Lett. 109, 194501 (2012)

    Article  ADS  Google Scholar 

  • Šafránková, J., Němeček, Z., Přech, L., Zastenker, G.N.: Ion kinetic scale in the solar wind observed. Phys. Rev. Lett. 110, 025004 (2013)

    Article  ADS  Google Scholar 

  • Sahraoui, F., Goldstein, M.L., Robert, P., Khotyaintsev, Y.V.: Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale. Phys. Rev. Lett. 102, 231102 (2009)

    Article  ADS  Google Scholar 

  • Sahraoui, F., Goldstein, M.L., Belmont, G., Canu, P., Rezeau, L.: Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind. Phys. Rev. Lett. 105, 131101 (2010)

    Article  ADS  Google Scholar 

  • Salem, C.S., Howes, G.G., Sundkvist, D., Bale, S.D., Chaston, C.C., Chen, C.H.K., Mozer, F.S.: Identification of kinetic Alfvén wave turbulence in the solar wind. Astrophys. J. 745, L9 (2012)

    Article  ADS  Google Scholar 

  • Sharma, R.P., Stubbe, P., Verga, A.: Numerical simulation of a Zakharov-Boussinesq system of equations to study Langmuir turbulence in the ionosphere. J. Geophys. Res. 101, 10995 (1996)

    Article  ADS  Google Scholar 

  • Sharma, R.P., Singh, H.D., Malik, M.: Alfvén wave filamentation and particle acceleration in solar wind and magnetosphere. J. Geophys. Res. 111, A12108 (2006)

    Article  ADS  Google Scholar 

  • Shukla, A., Sharma, R.P.: Nonlinear kinetic Alfven wave associated with saturating nonlinearity: application to solar wind and coronal heating. J. Atmos. Sol.-Terr. Phys. 64, 661 (2002)

    Article  ADS  Google Scholar 

  • Shukla, P.K., Stenflo, L.: Plasma density cavitation due to inertial Alfvén wave heating. Phys. Plasmas 6, 4120 (1999)

    Article  ADS  Google Scholar 

  • Shukla, P.K., Stenflo, L.: Generation of localized density perturbations by shear Alfvén waves. Phys. Plasmas 7, 2738 (2000)

    Article  ADS  Google Scholar 

  • Shukla, A., Sharma, R.P., Malik, M.: Filamentation of Alfvén waves associated with transverse perturbation. Phys. Plasmas 11, 2068 (2004)

    Article  ADS  Google Scholar 

  • Smith, C.W., Hamilton, K., Vasquez, B.J., Leamon, R.J.: Dependence of the dissipation range spectrum of interplanetary magnetic fluctuations on the rate of energy cascade. Astrophys. J. 645, L85 (2006)

    Article  ADS  Google Scholar 

  • Stix, T.H.: Waves in Plasmas. AIP, New York (1992)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the BK21 plus program through the National Research Foundation funded by the Ministry of Education of Korea, the Indian Space Research Organization (ISRO), India under RESPOND program and Department of Science and Technology (DST), India. NKD also acknowledges the Austrian Science Foundation (FWF) project I2939-N27.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Dwivedi, N.K., Sharma, R.P. et al. A two-fluid modeling of kinetic Alfvén wave turbulence. Astrophys Space Sci 363, 204 (2018). https://doi.org/10.1007/s10509-018-3427-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-018-3427-6

Keywords

Navigation