Skip to main content
Log in

Stability of a rhomboidal configuration with a central body

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

We consider a planar system of five bodies respectively located at \(\mathbf{r}_{0}\), \(\mathbf{r}_{1}\), \(\mathbf{r}_{2}\), \(\mathbf{r}_{3}\) and \(\mathbf{r}_{4}\) with masses \(m_{0} \geq 0\), \(m_{1}= m_{2}= m\) and \(m_{3}= m_{4}= \tilde{m}\) moving on a plane. The body of mass \(m_{0}\) is considered to be at the center of the configuration which is assumed to be the origin of the coordinate system. The other four bodies, called the primaries, form a rhombus configuration at all time. We assume that the mutual attraction among all the bodies is of the Newtonian type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arribas, M., Elipe, A.: Bifurcations and equilibria in the extended \(N\)-body ring problem. Mech. Res. Commun. 31(1), 1–18 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Arribas, M., Elipe, A., Kalvouridis, T., Palacios, M.: Homographic solutions in the planar \(n+1\) body problem with quasi-homogeneous potentials. Celest. Mech. Dyn. Astron. 99(1), 1–12 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Arribas, M., Elipe, A., Palacios, M.: Linear stability of ring systems with generalized central forces. Astron. Astrophys. 489, 819–824 (2008)

    Article  ADS  Google Scholar 

  • Elipe, A., Arribas, M., Kalvouridis, T.: Central configuration in the planar \(n+1\) body problem with generalized forces. In: Proceedings of the Eighth Conference on Celestial Mechanics (Spanish). Monogr. Real Acad. Ci. Exact. Fís.-Quím. Nat. Zaragoza, vol. 28, pp. 1–8. Real Acad. Ci. Exact., Fís. Quím. Nat. Zar, Zaragoza (2006)

    Google Scholar 

  • Gidea, M., Llibre, J.: Symmetric planar central configurations of five bodies: Euler plus two. Celest. Mech. Dyn. Astron. 2010(106), 89–107 (2010). doi:10.1007/s10569-009-9243-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kulesza, M., Marchesin, M., Vidal, C.: Restricted rhomboidal five-body problem. J. Phys. A, Math. Theor. 44, 32 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Marchesin, M., Vidal, C.: Stability in the rhomboidal 5-body problem with generalized central forces. J. Math. Phys. 54(10), p102902 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Maxwell, J.C.: On the Stability of Motions of Saturn’s Rings. MacMillan and Cia, Cambridge (1859)

    Google Scholar 

  • Pendse, C.G.: Philos. Trans. R. Soc. CCXXXIV-a, 145 (1935)

    Article  ADS  Google Scholar 

  • Roberts, G.: In: Monograph Series in Mathematics, vol. 6, p. 303. World Scientific, Singapore (2000)

    Google Scholar 

  • Scheeres, D.J., Vinh, N.X.: Celest. Mech. Dyn. Astron. 51, 83 (1991)

    Article  ADS  Google Scholar 

  • Szebehely, V.: Theory of Orbits. Academic Press, New York (1967)

    Google Scholar 

  • Tisserand, F.: Traité de Méchanique Céleste. Gauthier-Villars, Paris (1889)

    MATH  Google Scholar 

  • Vanberlei, R.J.: Linear stability of ring systems around oblate central masses. Adv. Space Res. 42(8), 1370–1377 (2008)

    Article  ADS  Google Scholar 

  • Vanberlei, R.J., Kolemen, E.: Linear stability of ring systems. Astron. J. 133(2), 656–664 (2007)

    Article  ADS  Google Scholar 

  • Willerding, E.: Theory of density waves in narrow planetary ring. Astron. Astrophys. 161(2), 403–407 (1986)

    ADS  MATH  Google Scholar 

  • Williams, W.L.: Permanent configurations in the problem of five bodies. Trans. Am. Math. Soc. 4(3), 563–579 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  • Wintner, A.: The Analytical Foundations of Celestial Mechanics. Princeton Univ. Press, Princeton (1941)

    MATH  Google Scholar 

Download references

Acknowledgements

I thank the referee and the editor for the precious suggestions.

I also would like to thank FAPEMIG for partially supporting the development of this paper through the “PROJETO UNIVERSAL 20076”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Marchesin.

Appendix

Appendix

1.1 7.1 Matrices of the linearization

A = ( ( 1 + p θ 1 ) 2 + U ρ 1 ρ 1 1 U ρ 2 ρ 1 1 U ρ 3 ρ 1 1 U ρ 4 ρ 1 1 U ρ 1 ρ 2 2 ( 1 + p θ 2 ) 2 + U ρ 2 ρ 2 2 U ρ 3 ρ 2 2 U ρ 4 ρ 2 2 U ρ 1 ρ 3 3 U ρ 2 ρ 3 3 ( 1 + p θ 3 ) 2 + U ρ 3 ρ 3 3 U ρ 4 ρ 3 3 U ρ 1 ρ 4 4 U ρ 2 ρ 4 4 U ρ 3 ρ 4 4 ( 1 + p θ 4 ) 2 + U ρ 4 ρ 4 4 ) , = ( ( 1 + p θ 1 ) 2 + a 11 a 12 a 13 a 14 a 21 ( 1 + p θ 2 ) 2 + a 22 a 23 a 24 a 31 a 32 ( 1 + p θ 3 ) 2 + a 33 a 34 a 41 a 42 a 43 ( 1 + p θ 4 ) 2 + a 44 ) , B = ( U θ 1 ρ 1 1 U θ 2 ρ 1 1 U θ 3 ρ 1 1 U θ 4 ρ 1 1 U θ 1 ρ 2 2 U θ 2 ρ 2 2 U θ 3 ρ 2 2 U θ 4 ρ 2 2 U θ 1 ρ 3 3 U θ 2 ρ 3 3 U θ 3 ρ 3 3 U θ 4 ρ 3 3 U θ 1 ρ 4 4 U θ 2 ρ 4 4 U θ 3 ρ 4 4 U θ 4 ρ 4 4 ) = ( b 11 b 12 b 13 b 14 b 21 b 22 b 23 b 24 b 31 b 32 b 33 b 34 b 41 b 42 b 43 b 44 ) , C = ( U z 1 ρ 1 1 U z 2 ρ 1 1 U z 3 ρ 1 1 U z 4 ρ 1 1 U z 1 ρ 2 2 U z 2 ρ 2 2 U z 3 ρ 2 2 U z 4 ρ 2 2 U z 1 ρ 3 3 U z 2 ρ 3 3 U z 3 ρ 3 3 U z 4 ρ 3 3 U z 1 ρ 4 4 U z 2 ρ 4 4 U z 3 ρ 4 4 U z 4 ρ 4 4 ) ,
D = ( 2 ρ 1 ( 1 + p θ 1 ) 0 0 0 0 2 ρ 2 ( 1 + p θ 2 ) 0 0 0 0 2 ρ 3 ( 1 + p θ 3 ) 0 0 0 0 2 ρ 4 ( 1 + p θ 4 ) ) , E = ( e ˜ 11 1 ρ 1 2 U ρ 2 θ 1 1 1 ρ 1 2 U ρ 3 θ 1 1 1 ρ 1 2 U ρ 4 θ 1 1 1 ρ 2 2 U ρ 1 θ 2 2 e ˜ 22 1 ρ 2 2 U ρ 3 θ 2 2 1 ρ 2 2 U ρ 4 θ 2 2 1 ρ 3 2 U ρ 1 θ 3 3 1 ρ 3 2 U ρ 2 θ 3 3 e ˜ 33 1 ρ 3 2 U ρ 4 θ 3 3 1 ρ 4 2 U ρ 1 θ 4 4 1 ρ 4 2 U ρ 2 θ 4 4 1 ρ 4 2 U ρ 3 θ 4 4 e ˜ 44 ) = ( e ˜ 11 1 ρ 1 2 e 12 1 ρ 1 2 e 13 1 ρ 1 2 e 14 1 ρ 2 2 e 21 e ˜ 22 1 ρ 2 2 e 23 1 ρ 2 2 e 24 1 ρ 3 2 e 31 1 ρ 3 2 e 32 e ˜ 33 1 ρ 3 2 e 34 1 ρ 4 2 e 41 1 ρ 4 2 e 42 1 ρ 4 2 e 43 e ˜ 44 ) ,

where \(\tilde{e}_{ii}=\frac{1}{\rho_{i}^{2}} (2p_{\rho_{i}}p_{ \theta_{i}}+2 p_{\theta_{i}}+U^{i}_{\rho_{i}\theta_{i}}-\frac{2U^{i} _{\theta_{i}}}{\rho_{i}} )\) for \(i=1,\dots ,4\).

F = ( 1 ρ 1 2 U θ 1 θ 1 1 1 ρ 1 2 U θ 2 θ 1 1 1 ρ 1 2 U θ 3 θ 1 1 1 ρ 1 2 U θ 4 θ 1 1 1 ρ 2 2 U θ 1 θ 2 2 1 ρ 2 2 U θ 2 θ 2 2 1 ρ 2 2 U θ 3 θ 2 2 1 ρ 2 2 U θ 4 θ 2 2 1 ρ 3 2 U θ 1 θ 3 3 1 ρ 3 2 U θ 2 θ 3 3 1 ρ 3 2 U θ 3 θ 3 3 1 ρ 3 2 U θ 4 θ 3 3 1 ρ 4 2 U θ 1 θ 4 4 1 ρ 4 2 U θ 2 θ 4 4 1 ρ 4 2 U θ 3 θ 4 4 1 ρ 4 2 U θ 4 θ 4 4 ) = ( 1 ρ 1 2 f 11 1 ρ 1 2 f 12 1 ρ 1 2 f 13 1 ρ 1 2 f 14 1 ρ 2 2 f 21 1 ρ 2 2 f 22 1 ρ 2 2 f 23 1 ρ 2 2 f 24 1 ρ 3 2 f 31 1 ρ 3 2 f 32 1 ρ 3 2 f 33 1 ρ 3 2 f 34 1 ρ 4 2 f 41 1 ρ 4 2 f 42 1 ρ 4 2 f 43 1 ρ 4 2 f 44 ) , G = ( 1 ρ 1 2 U z 1 θ 1 1 1 ρ 1 2 U z 2 θ 1 1 1 ρ 1 2 U z 3 θ 1 1 1 ρ 1 2 U z 4 θ 1 1 1 ρ 2 2 U z 1 θ 2 2 1 ρ 2 2 U z 2 θ 2 2 1 ρ 2 2 U z 3 θ 2 2 1 ρ 2 2 U z 4 θ 2 2 1 ρ 3 2 U z 1 θ 3 3 1 ρ 3 2 U z 2 θ 3 3 1 ρ 3 2 U z 3 θ 3 3 1 ρ 3 2 U z 4 θ 3 3 1 ρ 4 2 U z 1 θ 4 4 1 ρ 4 2 U z 2 θ 4 4 1 ρ 4 2 U z 3 θ 4 4 1 ρ 4 2 U z 4 θ 4 4 ) , H = ( 2 ρ 1 ( p θ 1 + 1 ) 0 0 0 0 2 ρ 2 ( p θ 2 + 1 ) 0 0 0 0 2 ρ 3 ( p θ 3 + 1 ) 0 0 0 0 2 ρ 4 ( p θ 4 + 1 ) ) , J = ( 2 p ρ 1 ρ 1 0 0 0 0 2 p ρ 2 ρ 2 0 0 0 0 2 p ρ 3 ρ 3 0 0 0 0 2 p ρ 4 ρ 4 ) , K = ( U ρ 1 z 1 1 U ρ 2 z 1 1 U ρ 3 z 1 1 U ρ 4 z 1 1 U ρ 1 z 2 2 U ρ 2 z 2 2 U ρ 3 z 2 2 U ρ 4 z 2 2 U ρ 1 z 3 3 U ρ 2 z 3 3 U ρ 3 z 3 3 U ρ 4 z 3 3 U ρ 1 z 4 4 U ρ 2 z 4 4 U ρ 3 z 4 4 U ρ 4 z 4 4 ) , L = ( U θ 1 z 1 1 U θ 2 z 1 1 U θ 3 z 1 1 U θ 4 z 1 1 U θ 1 z 2 2 U θ 2 z 2 2 U θ 3 z 2 2 U θ 4 z 2 2 U θ 1 z 3 3 U θ 2 z 3 3 U θ 3 z 3 3 U θ 4 z 3 3 U θ 1 z 4 4 U θ 2 z 4 4 U θ 3 z 4 4 U θ 4 z 4 4 ) , M = ( U z 1 z 1 1 U z 2 z 1 1 U z 3 z 1 1 U z 4 z 1 1 U z 1 z 2 2 U z 2 z 2 2 U z 3 z 2 2 U z 4 z 2 2 U z 1 z 3 3 U z 2 z 3 3 U z 3 z 3 3 U z 4 z 3 3 U z 1 z 4 4 U z 2 z 4 4 U z 3 z 4 4 U z 4 z 4 4 ) = ( m 11 m 12 m 13 m 13 m 12 m 11 m 13 m 13 m 31 m 31 m 33 m 34 m 31 m 31 m 34 m 33 ) .

1.2 7.2 Partial derivatives of the potential \(U_{j}\)

The second partial derivatives of \(U_{j}\) evaluated at a rhomboidal configuration are such that

$$\begin{aligned} &\!\begin{aligned}[b] \frac{\partial^{2}U_{1}}{\partial \rho^{2}_{1}}&= \frac{\partial^{2}U _{2}}{\partial \rho^{2}_{2}} \\ &= \frac{m}{4 \lambda^{3}} + \frac{2 (m + m _{0})}{\lambda^{3}} + \frac{6 \lambda^{2} \tilde{m}}{(\lambda^{2}+ 1)^{5/2}} - \frac{2 \tilde{m}}{(\lambda^{2} + 1)^{3/2}}, \end{aligned} \end{aligned}$$
(38)
$$\begin{aligned} & \frac{\partial^{2}U_{1}}{\partial \rho_{1} \partial \rho_{2}}= \frac{ \partial^{2}U_{2}}{\partial \rho_{2} \partial \rho_{1}}= -\frac{7 m}{4 \lambda^{3}}, \end{aligned}$$
(39)
$$\begin{aligned} &\!\begin{aligned}[b] \frac{\partial^{2}U_{1}}{\partial \rho_{1} \partial \rho_{3}} &= \frac{ \partial^{2}U_{1}}{\partial \rho_{1} \partial \rho_{4}}= \frac{ \partial^{2}U_{2}}{\partial \rho_{2} \partial \rho_{3}}= \frac{ \partial^{2}U_{2}}{\partial \rho_{2} \partial \rho_{4}}= \frac{ \partial^{2}U_{3}}{\partial \rho_{3} \partial \rho_{1}} \\ &= \frac{\partial^{2}U_{3}}{\partial \rho_{3} \partial \rho_{2}}=\frac{ \partial^{2}U_{4}}{\partial \rho_{4} \partial \rho_{1}}= \frac{ \partial^{2}U_{4}}{\partial \rho_{4} \partial \rho_{2}} = \frac{3 \lambda \tilde{m}}{(\lambda^{2} + 1)^{5/2}}, \end{aligned} \end{aligned}$$
(40)
$$\begin{aligned} &\!\begin{aligned}[b] \frac{\partial^{2}U_{3}}{\partial \rho^{2}_{3}} &= \frac{\partial^{2}U _{4}}{\partial \rho^{2}_{4}} \\ &= \frac{6 m}{(\lambda^{2} + 1)^{5/2}} - \frac{2 m}{(\lambda^{2} + 1)^{3/2}} + \frac{\tilde{m}}{4} + 2(m_{0} + \tilde{m}), \end{aligned} \end{aligned}$$
(41)
$$\begin{aligned} & \frac{\partial^{2}U_{3}}{\partial \rho_{3} \partial \rho_{4}}= \frac{ \partial^{2}U_{4}}{\partial \rho_{4} \partial \rho_{3}}= -\frac{7 \tilde{m}}{4}, \end{aligned}$$
(42)
$$\begin{aligned} & \frac{\partial^{2}U_{1}}{\partial \theta_{1} \partial \rho_{1}}= \frac{ \partial^{2}U_{1}}{\partial \theta_{1} \partial \rho_{2}}= \frac{ \partial^{2}U_{2}}{\partial \theta_{2} \partial \rho_{1}}= \frac{ \partial^{2}U_{2}}{\partial \theta_{2} \partial \rho_{2}}=\frac{ \partial^{2}U_{3}}{\partial \theta_{3} \partial \rho_{3}}= 0, \end{aligned}$$
(43)
$$\begin{aligned} & \frac{\partial^{2}U_{1}}{\partial \rho_{1} \partial \theta_{1}} =\frac{ \partial^{2}U_{1}}{\partial \rho_{1} \partial \theta_{2}}=0, \end{aligned}$$
(44)
$$\begin{aligned} & \frac{\partial^{2}U_{1}}{\partial \rho_{1} \partial \theta_{3}}= -\frac{ \partial^{2}U_{1}}{\partial \rho_{1} \partial \theta_{4}}= \tilde{m} \biggl( 1+ \frac{2\lambda^{2}-1}{(\lambda^{2}+1)^{5/2}} \biggr) , \end{aligned}$$
(45)
$$\begin{aligned} &\!\begin{aligned}[b] \frac{\partial^{2}U_{1}}{\partial \theta_{1} \partial \rho_{3}} &= -\frac{ \partial^{2}U_{1}}{\partial \theta_{1} \partial \rho_{4}}= - \frac{ \partial^{2}U_{2}}{\partial \theta_{2} \partial \rho_{3}} \\ &= -\frac{\partial^{2}U_{3}}{\partial \theta_{3} \partial \rho_{1}}=-\frac{ \partial^{2}U_{3}}{\partial \theta_{3} \partial \rho_{2}}= -\frac{ \partial^{2}U_{3}}{\partial \theta_{4} \partial \rho_{1}} \\ &= \biggl( 2 - \frac{3 }{(\lambda^{2} + 1)^{5/2}} + \frac{1}{(\lambda ^{2} + 1)^{3/2}} \biggr) \lambda \tilde{m}, \end{aligned} \end{aligned}$$
(46)
$$\begin{aligned} & \frac{\partial^{2}U_{2}}{\partial \rho_{2} \partial \theta_{3}}= -\frac{ \partial^{2}U_{2}}{\partial \rho_{2} \partial \theta_{4}}= \biggl( -1+ \frac{2\lambda^{2}- 1}{(\lambda^{2} + 1)^{5/2}} \biggr) \tilde{m}, \end{aligned}$$
(47)
$$\begin{aligned} & \frac{\partial^{2}U_{3}}{\partial \rho_{3} \partial \theta_{1}}= \biggl( \frac{-2}{\lambda^{3}} + \frac{(\lambda^{2} - 2 )}{(\lambda^{2} + 1)^{5/2}} \biggr) \lambda m, \end{aligned}$$
(48)
$$\begin{aligned} & \frac{\partial^{2}U_{3}}{\partial \rho_{3} \partial \theta_{2}}= -\frac{ \lambda m (\lambda^{2} - 2 ) }{(\lambda^{2} + 1)^{5/2}}, \end{aligned}$$
(49)
$$\begin{aligned} & \frac{\partial^{2}U_{3}}{\partial \rho_{3} \partial \theta_{3}}= \frac{2 m}{\lambda^{2}}, \end{aligned}$$
(50)
$$\begin{aligned} & \frac{\partial^{2}U_{3}}{\partial \rho_{3} \partial \theta_{4}}= \frac{ \partial^{2}U_{4}}{\partial \rho_{4} \partial \theta_{3}}=\frac{ \partial^{2}U_{4}}{\partial \rho_{4} \partial \theta_{4}}= 0, \end{aligned}$$
(51)
$$\begin{aligned} & \frac{\partial^{2}U_{4}}{\partial \rho_{4} \partial \theta_{1}}= -\frac{ \partial^{2}U_{4}}{\partial \rho_{4} \partial \theta_{2}}= \biggl( \frac{1}{ \lambda^{3}} + \frac{(-\lambda^{2} + 2 )}{(\lambda^{2} + 1)^{5/2}} \biggr) \lambda m, \end{aligned}$$
(52)
$$\begin{aligned} & \frac{\partial^{2}U_{1}}{\partial z^{2}_{1}}= \frac{\partial^{2}U _{2}}{\partial z^{2}_{2}}= - \frac{9 m + 8m_{0}}{8\lambda^{3}} - \frac{2 \tilde{m}}{(\lambda^{2} + 1)^{3/2}}, \end{aligned}$$
(53)
$$\begin{aligned} & \frac{\partial^{2}U_{1}}{\partial z_{1} \partial z_{2}}= \frac{ \partial^{2}U_{2}}{\partial z_{2} \partial z_{1}}= -\frac{7 m}{8 \lambda^{3}}, \end{aligned}$$
(54)
$$\begin{aligned} &\!\begin{aligned}[b] \frac{\partial^{2}U_{1}}{\partial z_{1} \partial z_{3}} &= \frac{ \partial^{2}U_{1}}{\partial z_{1} \partial z_{4}}= \frac{\partial^{2}U _{2}}{\partial z_{2} \partial z_{3}} \\ &=\frac{\partial^{2}U_{2}}{\partial z_{2} \partial z_{4}}= \biggl( \frac{1}{( \lambda^{2} + 1)^{3/2}} - 1 \biggr) \tilde{m}, \end{aligned} \end{aligned}$$
(55)
$$\begin{aligned} &\!\begin{aligned}[b] \frac{\partial^{2}U_{3}}{\partial z_{3} \partial z_{1}} &= \frac{ \partial^{2}U_{3}}{\partial z_{3} \partial z_{2}} = \frac{\partial^{2}U _{4}}{\partial z_{4} \partial z_{1}} \\ & =\frac{\partial^{2}U_{4}}{\partial z_{4} \partial z_{2}}= \biggl( \frac{1}{( \lambda^{2} + 1)^{3/2}} - \frac{1}{\lambda^{3}} \biggr) m, \end{aligned} \end{aligned}$$
(56)
$$\begin{aligned} & \frac{\partial^{2}U_{3}}{\partial z^{2}_{3}}= \frac{\partial^{2}U _{4}}{\partial z^{2}_{4}}= -\frac{2 m}{(\lambda^{2} + 1)^{3/2}} - \frac{9 \tilde{m}}{8} -m_{0}, \end{aligned}$$
(57)
$$\begin{aligned} & \frac{\partial^{2}U_{3}}{\partial z_{3} \partial z_{4}}= \frac{ \partial^{2}U_{4}}{\partial z_{4} \partial z_{3}}= - \frac{7 \tilde{m}}{8}, \end{aligned}$$
(58)
$$\begin{aligned} & \frac{\partial^{2}U_{4}}{\partial \rho_{4} \partial \theta_{3}}= \frac{ \partial^{2}U_{4}}{\partial \rho_{4} \partial \theta_{4}}= 0, \end{aligned}$$
(59)
$$\begin{aligned} & \frac{\partial^{2}U_{1}}{\partial \rho_{1} \partial z_{1}}= \frac{ \partial^{2}U_{1}}{\partial \rho_{1} \partial z_{2}}= \frac{\partial ^{2}U_{1}}{\partial \rho_{1} \partial z_{3}}=\frac{\partial^{2}U_{1}}{ \partial \rho_{1} \partial z_{4}}= 0, \end{aligned}$$
(60)
$$\begin{aligned} & \frac{\partial^{2}U_{2}}{\partial \rho_{2} \partial z_{1}}= \frac{ \partial^{2}U_{2}}{\partial \rho_{2} \partial z_{2}}= \frac{\partial ^{2}U_{2}}{\partial \rho_{2} \partial z_{3}}=\frac{\partial^{2}U_{2}}{ \partial \rho_{2} \partial z_{4}}= 0, \end{aligned}$$
(61)
$$\begin{aligned} & \frac{\partial^{2}U_{3}}{\partial \rho_{3} \partial z_{1}}= \frac{ \partial^{2}U_{3}}{\partial \rho_{3} \partial z_{2}}= \frac{\partial ^{2}U_{3}}{\partial \rho_{3} \partial z_{3}}=\frac{\partial^{2}U_{3}}{ \partial \rho_{3} \partial z_{4}}= 0, \end{aligned}$$
(62)
$$\begin{aligned} & \frac{\partial^{2}U_{4}}{\partial \rho_{4} \partial z_{1}}= \frac{ \partial^{2}U_{4}}{\partial \rho_{4} \partial z_{2}}= \frac{\partial ^{2}U_{4}}{\partial \rho_{4} \partial z_{3}}= \frac{\partial^{2}U_{4}}{ \partial \rho_{4} \partial z_{4}}= 0, \end{aligned}$$
(63)
$$\begin{aligned} & \frac{\partial^{2}U_{2}}{\partial z_{2} \partial \theta_{1}}= \frac{ \partial^{2}U_{2}}{\partial z_{2} \partial \theta_{2}}= \frac{\partial ^{2}U_{2}}{\partial z_{2} \partial \theta_{3}}= \frac{\partial^{2}U _{2}}{\partial z_{2} \partial \theta_{4}}= 0, \end{aligned}$$
(64)
$$\begin{aligned} & \frac{\partial^{2}U_{3}}{\partial z_{3} \partial \theta_{1}}= \frac{ \partial^{2}U_{3}}{\partial z_{3} \partial \theta_{2}}= \frac{\partial ^{2}U_{3}}{\partial z_{3} \partial \theta_{3}}= \frac{\partial^{2}U _{3}}{\partial z_{3} \partial \theta_{4}}= 0, \end{aligned}$$
(65)
$$\begin{aligned} & \frac{\partial^{2}U_{4}}{\partial z_{4} \partial \theta_{1}}= \frac{ \partial^{2}U_{4}}{\partial z_{4} \partial \theta_{2}}= \frac{\partial ^{2}U_{4}}{\partial z_{4} \partial \theta_{3}}= \frac{\partial^{2}U _{4}}{\partial z_{4} \partial \theta_{4}}= 0, \end{aligned}$$
(66)
$$\begin{aligned} & \frac{\partial^{2}U_{1}}{\partial \theta^{2}_{1}}= \frac{\partial ^{2}U_{2}}{\partial \theta^{2}_{2}} = -\frac{7 m}{8\lambda }+ \frac{6 \lambda^{2} \tilde{m}}{(\lambda^{2}+1)^{5/2}}, \end{aligned}$$
(67)
$$\begin{aligned} & \frac{\partial^{2}U_{1}}{\partial \theta_{1} \partial \theta_{2}}= \frac{ \partial^{2}U_{2}}{\partial \theta_{2} \partial \theta_{1}}= \frac{7m}{8 \lambda }, \end{aligned}$$
(68)
$$\begin{aligned} &\!\begin{aligned}[b] \frac{\partial^{2}U_{1}}{\partial \theta_{1} \partial \theta_{3}} &= \frac{ \partial^{2}U_{1}}{\partial \theta_{1} \partial \theta_{4}}= \frac{ \partial^{2}U_{2}}{\partial \theta_{2} \partial \theta_{3}} \\ &= \frac{\partial^{2}U_{2}}{\partial \theta_{2} \partial \theta_{4}}= -\frac{3 \lambda^{2} \tilde{m}}{(\lambda^{2}+1)^{3/2}}, \end{aligned} \end{aligned}$$
(69)
$$\begin{aligned} & \frac{\partial^{2}U_{3}}{\partial \theta^{2}_{3}}= \frac{\partial ^{2}U_{4}}{\partial \theta^{2}_{4}} = -\frac{7}{8} \tilde{m}+ \frac{6 \lambda^{2} m}{(\lambda^{2}+1)^{5/2}}, \end{aligned}$$
(70)
$$\begin{aligned} &\!\begin{aligned}[b] \frac{\partial^{2}U_{3}}{\partial \theta_{3} \partial \theta_{1}} &= \frac{ \partial^{2}U_{3}}{\partial \theta_{3} \partial \theta_{2}}= \frac{ \partial^{2}U_{4}}{\partial \theta_{4} \partial \theta_{1}} \\ &= \frac{\partial^{2}U_{4}}{\partial \theta_{4} \partial \theta_{2}}= -\frac{3 \lambda^{2} m}{(\lambda^{2}+1)^{3/2}}, \end{aligned} \end{aligned}$$
(71)
$$\begin{aligned} & \frac{\partial^{2}U_{3}}{\partial \theta_{3} \partial \theta_{4}}= \frac{ \partial^{2}U_{4}}{\partial \theta_{4} \partial \theta_{3}}= \frac{7 \tilde{m}}{8}. \end{aligned}$$
(72)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchesin, M. Stability of a rhomboidal configuration with a central body. Astrophys Space Sci 362, 1 (2017). https://doi.org/10.1007/s10509-016-2982-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-016-2982-y

Keywords

Navigation