Skip to main content
Log in

High dissipative nonminimal warm inflation

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

We study a model of warm inflation in which both inflaton field and its derivatives are coupled nonminimally to curvature. We survey the spectrum of the primordial perturbations in high dissipative regime. By expanding the action up to the third order, the amplitude of the non-Gaussianity is studied both in the equilateral and orthogonal configurations. Finally, by adopting four sort of potentials, we compare our model with the Planck 2015 released observational data and obtain some constraints on the model’s parameters space in the high dissipation regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kourosh Nozari.

Appendix

Appendix

$$\begin{aligned} S_{3} =& \int dt d^{3}x a^{3} \biggl[3M_{pl}^{2}H^{2} \biggl(1-\frac{\xi\varphi^{2}}{2M_{pl}^{2}} \biggr)-\frac{\dot{\varphi}^{2}}{2} \\ &{}- 6\xi H\varphi\dot{\varphi}+15\frac{H^{2}}{M^{2}}\dot{ \varphi}^{2} \biggr]\varPhi^{3}-\frac{2\dot{\varphi}^{2}}{a^{2}M^{2}} \partial^{2}\varPsi \\ &{}+ \biggl[ \biggl(-9M_{pl}^{2}H^{2} \biggl(1-\frac{\xi\varphi^{2}}{M_{pl}^{2}} \biggr)+ \frac{3\dot{\varphi}^{2}}{2}+18\xi H\varphi\dot{ \varphi} \\ &{}- \frac{27H^{2}}{M^{2}}\dot{\varphi}^{2} \biggr)\varPsi \\ &{}+ \biggl(-6M_{pl}^{2}H \biggl(1-\frac{\xi\varphi^{2}}{M_{pl}^{2}} \biggr)-6\xi H\varphi\dot{\varphi}-\frac{18H}{M^{2}}\dot{\varphi}^{2} \biggr)\dot{\varPsi} \\ &{}+ \biggl(2M_{pl}^{2}H \biggl(1-\frac{\xi\varphi^{2}}{M_{pl}^{2}} \biggr)-2\xi \varphi\dot{\varphi}+\frac{6H}{M^{2}}\dot{\varphi}^{2} \biggr)\frac{\partial^{2}{\mathcal{B}}}{a^{2}} \biggr]\varPhi^{2} \\ &{}+ \biggl[ \biggl(18M_{pl}^{2}H \biggl(1-\frac{\xi\varphi^{2}}{2M_{pl}^{2}} \biggr)-18\xi \varphi\dot{\varphi} \\ &{}-\frac{27H}{M^{2}}\dot{\varphi}^{2} \biggr)\dot{\varPsi}\varPsi- \frac{2M_{pl}^{2} (1-\frac{\xi\varphi^{2}}{2M_{pl}^{2}} )+ \frac{\dot{\varphi}^{2}}{M^{2}}}{a^{2}}\varPsi\partial^{2}\varPsi \\ &{}+ \biggl(-2M_{pl}^{2} \biggl(1-\frac{\xi\varphi^{2}}{M_{pl}^{2}} \biggr)+2\xi\varphi\dot{\varphi}+ \frac{3}{M^{2}}\dot{\varphi}^{2} \biggr)\frac{\partial_{i}\varPsi \partial_{i}{\mathcal{B}}}{a^{2}} \\ &{}+ \frac{-M_{pl}^{2}(1-\frac{\xi\varphi^{2}}{2M_{pl}^{2}})+ \frac{\dot{\varphi}^{2}}{2M^{2}}}{a^{2}}\bigl(\partial^{2}\varPsi\bigr) \\ &{}+ \frac{ (-2M_{pl}^{2} (1-\frac{\xi\varphi^{2}}{M_{pl}^{2}} )+2\xi\varphi\dot{\varphi}+ \frac{3}{M^{2}}\dot{\varphi}^{2} )}{a^{2}}\varPsi\partial^{2}{\mathcal{B}} \\ &{}+ \biggl(3M_{pl}^{2} \biggl(1-\frac{\xi\varphi^{2}}{2M_{pl}^{2}} \biggr)- \frac{9\dot{\varphi}^{2}}{2M^{2}} \biggr)\dot{\varPsi}^{2} \biggr]\varPhi \\ &{}+ \frac{M_{pl}^{2} (1-\frac{\xi \varphi^{2}}{2M_{pl}^{2}} )+\frac{\dot{\varphi}^{2}}{2M^{2}}}{a^{2}}\varPsi(\partial\varPsi)^{2} \\ &{}+ \biggl(-9M_{pl}^{2} \biggl(1-\frac{\xi \varphi^{2}}{M_{pl}^{2}} \biggr)+\frac{\dot{\varphi}^{2}}{2M^{2}} \biggr)\dot{\varPsi}^{2}\varPsi \\ &{}+ \frac{2M_{pl}^{2} (1-\frac{\xi \varphi^{2}}{M_{pl}^{2}} )-\frac{2\dot{\varphi}^{2}}{M^{2}}}{a^{2}}\dot{\varPsi}\partial_{i}\varPsi \partial_{i}{\mathcal{B}} \\ &{}+ \frac{2M_{pl}^{2} (1-\frac{\xi \varphi^{2}}{M_{pl}^{2}} )-\frac{\dot{\varphi}^{2}}{M^{2}}}{a^{2}}\dot{\varPsi}\varPsi\partial^{2}{\mathcal{B}} \\ &{}+ \frac{-2M_{pl}^{2} (1-\frac{\xi \varphi^{2}}{M_{pl}^{2}} )+\frac{\dot{\varphi}^{2}}{M^{2}}}{ a^{2}}\partial_{i}\varPsi\partial_{i}{ \mathcal{B}}\partial^{2}{\mathcal{B}} \\ &{}+ \frac{3}{2}\frac{ (M_{pl}^{2} (1 {-} \frac{\xi \varphi^{2}}{M_{pl}^{2}} ) {+} \frac{\dot{\varphi}^{2}}{2M^{2}} )\varPsi (\partial_{i}\partial_{j}{\mathcal{B}}\partial_{i}\partial_{j}{\mathcal{B}} {-} \partial^{2}{\mathcal{B}}\partial^{2}{\mathcal{B}} )}{a^{4}}, \end{aligned}$$
(76)
$$\begin{aligned} n_{s}-1 =&\frac{2V''\varepsilon H}{V'H'} \\ &{}- \frac{ (\varGamma'H+H'\varGamma+\frac{36H^{3}H'}{M^{2}} ) (V'+\xi R \varphi )}{2 (\varGamma H+9\frac{H^{4}}{M^{2}} )^{2}} \\ &{}+ 2 \biggl[-\eta+ \frac{H'' (\xi R\varphi+V' )}{H' (\varGamma H+9\frac{H^{4}}{M^{2}} )} \\ &{}+ \frac{27H^{2}H' (\xi R\varphi+V' )}{M^{2}H (9\frac{H^{3}}{M^{2}} )^{2}}-\frac{\varGamma' (\xi R\varphi+V' )}{H (9\frac{H^{3}}{M^{2}}+\varGamma )^{2}} \\ &{}- \frac{ (V'+\xi R\varphi )}{2H^{2} (\varGamma +9\frac{H^{3}}{M^{2}} )^{2}} \\ &{}\times \frac{\kappa^{2} (1+3\frac{H^{2}}{M^{2}}-2\xi-\frac{\varGamma' (\xi R \varphi+V' )}{48H^{2} (9\frac{H^{3}}{M^{2}}+\varGamma )}+\frac{\varGamma}{4H} )}{ (1-\kappa^{2}\xi \varphi^{2} )} \\ &{}\times \biggl[\frac{-18H^{3} (\xi R \varphi+V' )}{M^{2} (9\frac{H^{3}}{M^{2}}+\varGamma )}-2\xi R\varphi-2V' \\ &{}-3\varGamma \dot{\varphi} \biggr] \biggr]. \end{aligned}$$
(77)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nozari, K., Shoukrani, M. High dissipative nonminimal warm inflation. Astrophys Space Sci 361, 289 (2016). https://doi.org/10.1007/s10509-016-2881-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-016-2881-2

Keywords

Navigation