Skip to main content
Log in

Possible gamma-ray burst radio detections by the Square Kilometre Array. New perspectives

  • Review Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The next generation interferometric radio telescope, the Square Kilometre Array (SKA), which will be the most sensitive and largest radio telescope ever constructed, could greatly contribute to the detection, survey and characterization of Gamma Ray Bursts (GRBs). By the SKA, it will be possible to perform the follow up of GRBs even for several months. This approach would be extremely useful to extend the Spectrum Energetic Distribution (SED) from the gamma to the to radio band and would increase the number of radio detectable GRBs. In principle, the SKA could help to understand the physics of GRBs by setting constraints on theoretical models. This goal could be achieved by taking into account multiple observations at different wavelengths in order to obtain a deeper insight of the sources. Here, we present an estimation of GRB radio detections, showing that the GRBs can really be observed by the SKA. The approach that we present consists in determining blind detection rates derived by a very large sample consisting of merging several GRB catalogues observed by current missions as Swift, Fermi, Agile and INTEGRAL and by previous missions as BeppoSAX, CGRO, GRANAT, HETE-2, Ulysses and Wind. The final catalogue counts 7516 distinct sources. We compute the fraction of GRBs that could be observed by the SKA at high and low frequencies, above its observable sky. Considering the planned SKA sensitivity and through an extrapolation based on previous works and observations, we deduce the minimum fluence in the range 15–150 keV. This is the energy interval where a GRB should emit to be detectable in the radio band by the SKA. Results seem consistent with observational capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://www.skatelescope.org/.

  2. http://arxiv.org/find/all/1/all:+EXACT+Science_with_the_Square_Kilometer_Array/0/1/0/all/0/1.

  3. http://heasarc.gsfc.nasa.gov/W3Browse/cgro/batsegrb.html. However, there is another useful web site at http://gammaray.msfc.nasa.gov/batse/grb/catalog/current/.

  4. http://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermigbrst.html.

  5. http://swift.gsfc.nasa.gov/archive/grb_table.

  6. The estimate for maximum location error is \(63.7^{ \circ }\) in Stern et al. (2001) for BATSE; the maximum location error is \(83^{\circ }\) in Frontera et al. (2009) for BeppoSAX. However, the most discriminating factor is generally the time, indeed changing angular range modifies their overlapping of just a few elements.

  7. http://heasarc.gsfc.nasa.gov/W3Browse/hete-2/hete2grb.html.

  8. http://space.mit.edu/HETE/Bursts/.

  9. http://heasarc.gsfc.nasa.gov/W3Browse/hete-2/hete2gcn.html.

  10. I report that in Sakamoto et al. (2011) there are 3 elements more with respect to the web table in “Swift GRB Table and Lookup”, but they have not been counted.

  11. The most position error (90 % error radius) in Sakamoto et al. (2011) is of 6.4′; the maximum positional uncertainty in Fermi catalogue is \(45.7^{\circ }\).

  12. http://heasarc.gsfc.nasa.gov/W3Browse/gamma-ray-bursts/grbcat.html.

  13. http://heasarc.gsfc.nasa.gov/W3Browse/gamma-ray-bursts/phebus.html.

  14. The minimum elevation must be \({<} 15^{\circ }\), as imposed by constraints (Dewdney et al. 2013).

  15. Its Full Width Half Maximum (bandwidth \(\Delta \lambda \)) is 138 nm, its Effective Wavelength Midpoint \(\lambda_{\mathrm{{eff}}}\) for standard filter is at 658 nm (Binney and Merrifield 1998).

References

  • Anderson, G.E., van der Horst, A.J., Staley, T.D., Fender, R.P., Wijers, R.A.M.J., Scaife, A.M.M., Rumsey, C., Titterington, D.J., Rowlinson, A., Saunders, R.D.E.: Mon. Not. R. Astron. Soc. 440, 2059 (2014). doi:10.1093/mnras/stu478. 1403.2217

    Article  ADS  Google Scholar 

  • Bernardini, M.G., Bianco, C.L., Caito, L., Dainotti, M.G., Guida, R., Ruffini, R.: In: Kleinert, H., Jantzen, R.T., Ruffini, R. (eds.) The Eleventh Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, p. 1959 (2008). doi:10.1142/9789812834300_0298

    Google Scholar 

  • Binney, J., Merrifield, M.: Galactic Astronomy, p. 53 (1998). Chap. 2.3.2

    Google Scholar 

  • Bošnjak, Ž., Götz, D., Bouchet, L., Schanne, S., Cordier, B.: Astron. Astrophys. 561, 25 (2014). doi:10.1051/0004-6361/201322256

    Article  ADS  Google Scholar 

  • Chandra, P., Frail, D.A.: Acad. Publ. J. 746(2), 156 (2012)

    Google Scholar 

  • Cucchiara, A., Levan, A.J., Fox, D.B., Tanvir, N.R., Ukwatta, T.N., Berger, E., Krühler, T., Küpcü Yoldaş, A. , Wu, X.F., Toma, K., Greiner, J., Olivares, F.E., Rowlinson, A., Amati, L., Sakamoto, T., Roth, K., Stephens, A., Fritz, A., Fynbo, J.P.U., Hjorth, J., Malesani, D., Jakobsson, P., Wiersema, K., O’Brien, P.T., Soderberg, A.M., Foley, R.J., Fruchter, A.S., Rhoads, J., Rutledge, R.E., Schmidt, B.P., Dopita, M.A., Podsiadlowski, P., Willingale, R., Wolf, C., Kulkarni, S.R., D’Avanzo, P.: Acad. Publ. J. 736, 7 (2011). doi:10.1088/0004-637X. 1105.4915

    Google Scholar 

  • Dado, S., Dar, A., De Rújula, A.: Astron. Astrophys. 401(1), 243 (2003). doi:10.1051/0004-6361:20021865

    Article  ADS  Google Scholar 

  • Dainotti, M.G., Bernardini, M.G., Bianco, C.L., Caito, L., Guida, R., Ruffini, R.: Astron. Astrophys. 471(2), 29 (2007). doi:10.1051/0004-6361:20078068

    Article  ADS  Google Scholar 

  • Dewdney, P.E., Turner, W., Millenaar, R., McCool, R., Lazio, J., Cornwel, T.J.: SKA-RfP documentation (SKA-TEL-SKO-DD-001), 1 (2013)

  • Feretti, L., Prandoni, I., Brunetti, G., Burigana, C., Capetti, A., Della Valle, M., Ferrara, A., Ghirlanda, G., Govoni, F., Molinari, S., Possenti, A., Scaramella, R., Testi, L., Tozzi, P., Umana, G., Wolter, A. (eds.): Italian Ska White Book. INAF Press, Rome (2014)

    Google Scholar 

  • Frail, D.A., Waxman, E., Kulkarni, S.R.: Acad. Publ. J. 537(1), 191 (2000)

    Google Scholar 

  • Frontera, F., Guidorzi, C., Montanari, E., Rossi, F., Costa, E., Feroci, M., Calura, F., Rapisarda, M., Amati, L., Carturan, D., Cinti, M.R., Fiume, D.D., Nicastro, L., Orlandini, M.: Astrophys. J. Suppl. Ser. 180, 192 (2009). doi:10.1088/0067-0049. 0809.5174

    Article  ADS  Google Scholar 

  • Galli, M., Marisaldi, M., Fuschino, F., Labanti, C., Argan, A., Barbiellini, G., Bulgarelli, A., Cattaneo, P.W., Colafrancesco, S., Del Monte, E., Feroci, M., Gianotti, F., Giuliani, A., Longo, F., Mereghetti, S., Morselli, A., Pacciani, L., Pellizzoni, A., Pittori, C., Rapisarda, M., Rappoldi, A., Tavani, M., Trifoglio, M., Trois, A., Vercellone, S., Verrecchia, F.: Astron. Astrophys. 553, 33 (2013). doi:10.1051/0004-6361/201220833

    Article  ADS  Google Scholar 

  • Gehrels, N., Barthelmy, S.D., Burrows, D.N., Cannizzo, J.K., Chincarini, G., Fenimore, E., Kouveliotou, C., O’Brien, P., Palmer, D.M., Racusin, J., Roming, P.W.A., Sakamoto, T., Tueller, J., Wijers, R.A.M.J., Zhang, B.: Acad. Publ. J. 689(2), 1161 (2008)

    Google Scholar 

  • Ghirlanda, G., Burlon, D., Ghisellini, G., Salvaterra, R., Bernardini, M.G., Campana, S., Covino, S., D’Avanzo, P., D’Elia, V., Melandri, A., Murphy, T., Nava, L., Vergani, S.D., Tagliaferri, G.: Publ. Astron. Soc. Aust. 31, 22 (2014). doi:10.1017/pasa.2014.14. 1402.6338

    Article  ADS  Google Scholar 

  • Goldstein, A., Burgess, J.M., Preece, R.D., Briggs, M.S., Guiriec, S., van der Horst, A.J., Connaughton, V., Wilson-Hodge, C.A., Paciesas, W.S., Meegan, C.A., von Kienlin, A., Bhat, P.N., Bissaldi, E., Chaplin, V., Diehl, R., Fishman, G.J., Fitzpatrick, G., Foley, S., Gibby, M., Giles, M., Greiner, J., Gruber, D., Kippen, R.M., Kouveliotou, C., McBreen, S., McGlynn, S., Rau, A., Tierney, D.: Astrophys. J. Suppl. Ser. 199(1), 19 (2012)

    Article  ADS  Google Scholar 

  • Gruber, D., Goldstein, A., von Ahlefeld, V.W., Bhat, P.N., Bissaldi, E., Briggs, M.S., Byrne, D., Cleveland, W.H., Connaughton, V., Diehl, R., Fishman, G., Fitzpatrick, G., Foley, S., Gibby, M., Giles, M.M., Greiner, J., Guiriec, S., van der Horst, A.J., von Kienlin, A., Kouveliotou, C., Layden, E., Lin, L., Meegan, C.A., McGlynn, S., Paciesas, W.S., Pelassa, V., Preece, R.D., Rau, A., Wilson-Hodge, C.A., Xiong, S., Younes, G., Yu, H.-F.: Astrophys. J. Suppl. Ser. 211(1), 12 (2014)

    Article  ADS  Google Scholar 

  • Hancock, P.J., Gaensler, B.M., Murphy, T.: Astrophys. J. 776(2), 106 (2013)

    Article  ADS  Google Scholar 

  • Hurley, K., Briggs, M.S., Kippen, R.M., Kouveliotou, C., Meegan, C., Fishman, G., Cline, T., Boer, M.: Astrophys. J. Suppl. Ser. 120(2), 399 (1999)

    Article  ADS  Google Scholar 

  • Hurley, K., Pal’shin, V.D., Aptekar, R.L., Golenetskii, S.V., Frederiks, D.D., Mazets, E.P., Svinkin, D.S., Briggs, M.S., Connaughton, V., Meegan, C., Goldsten, J., Boynton, W., Fellows, C., Harshman, K., Mitrofanov, I.G., Golovin, D.V., Kozyrev, A.S., Litvak, M.L., Sanin, A.B., Rau, A., von Kienlin, A., Zhang, X., Yamaoka, K., Fukazawa, Y., Hanabata, Y., Ohno, M., Takahashi, T., Tashiro, M., Terada, Y., Murakami, T., Makishima, K., Barthelmy, S., Cline, T., Gehrels, N., Cummings, J., Krimm, H.A., Smith, D.M., Monte, E.D., Feroci, M., Marisaldi, M.: Astrophys. J. Suppl. Ser. 207(2), 39 (2013). doi:10.1088/0067-0049/207/2/39

    Article  ADS  Google Scholar 

  • Kann, D.A., Klose, S., Zhang, B., Covino, S., Butler, N.R., Malesani, D., Nakar, E., Wilson, A.C., Antonelli, L.A., Chincarini, G., Cobb, B.E.A.D.P., D’Elia, V., Della Valle, M., Ferrero, P., Fugazza, D., Gorosabel, J., Israel, G.L., Mannucci, F., Piranomonte, S., Schulze, S., Stella, L., Tagliaferri, G., Wiersema, K.: Acad. Publ. J. 734, 96 (2011). doi:10.1088/0004-637X/734/2/96. 0804.1959

    Google Scholar 

  • Kommers, J.M., Lewin, W.H.G., Kouveliotou, C., van Paradijs, J., Pendleton, G.N., Meegan, C.A., Fishman, G.J.: Astrophys. J. Suppl. Ser. 134, 385 (2001). doi:10.1086/320856

    Article  ADS  Google Scholar 

  • Longo, F., Moretti, E., Nava, L., Desiante, R., Olivo, M., Del Monte, E., Rappoldi, A., Fuschino, F., Marisaldi, M., Giuliani, A., Cutini, S., Feroci, M., Costa, E., Pittori, C., Tavani, M., Argan, A., Barbiellini, G., Bulgarelli, A., Caraveo, P., Cardillo, M., Cattaneo, P.W., Chen, A.W., D’Ammando, F., Di Cocco, G., Donnarumma, I., Evangelista, Y., Ferrari, A., Fiorini, M., Galli, M., Gianotti, F., Giusti, M., Labanti, C., Lapshov, I., Lazzarotto, F., Lipari, P., Mereghetti, S., Morselli, A., Pacciani, L., Pellizzoni, A., Perotti, F., Piano, G., Picozza, P., Pilia, M., Prest, M., Pucella, G., Rapisarda, M., Rubini, A., Sabatini, S., Soffitta, P., Striani, E., Trifoglio, M., Trois, A., Vallazza, E., Vercellone, S., Vittorini, V., Zanello, D., Antonelli, L.A., Colafrancesco, S., Giommi, P., Santolamazza, P., Verrecchia, F., Lucarelli, F., Salotti, L.: Astron. Astrophys. 547, 95 (2012). doi:10.1051/0004-6361/201016238

    Article  ADS  Google Scholar 

  • Meegan, C.A., Pendleton, G.N., Briggs, M.S., Kouveliotou, C., Koshut, T.M., Lestrade, J.P., Paciesas, W.S., McCollough, M.L., Brainerd, J.J., Horack, J.M., Hakkila, J., Henze, W., Preece, R.D., Mallozzi, R.S., Fishman, G.J.: Astrophys. J. Suppl. Ser. 106, 65 (1996). doi:10.1086/192329

    Article  ADS  Google Scholar 

  • Meegan, C.A., Paciesas, W.S., Pendleton, G.N., Briggs, M.S., Kouveliotou, C., Koshut, T.M., Lestrade, J.P., McCollough, M.L., Brainerd, J.J., Hakkila, J., Henze, W., Preece, R.D., Connaughton, V., Kippen, R.M., Mallozzi, R.S., Fishman, G.J.: In: AIP Conference Proc. 428 (1998)

    Google Scholar 

  • Mereghetti, S.: ArXiv e-prints. 1302.5347 (2013)

  • Mészáros, P.: Rep. Prog. Phys. 69(8), 2259 (2006)

    Article  Google Scholar 

  • Millenaar, R.P., Bolton, R.C.: SKA-RfP documentation (WP3-050.020.000-TR-001 rev. C), 1 (2010)

  • Minaev, P.Y., Pozanenko, A.S., Molkov, S.V., Grebenev, S.A.: ArXiv e-prints. 1405.3784 (2014)

  • Norris, J.P., Bonnell, J.T.: Acad. Publ. J. 643(1), 266 (2006)

    Google Scholar 

  • Nysewander, M., Fruchter, A.S., Pe’er, A.: Acad. Publ. J. 701(1), 824 (2009)

    Google Scholar 

  • Oates, S.R., Page, M.J., Schady, P., De Pasquale, M., Koch, T.S., Breeveld, A.A., Brown, P.J., Chester, M.M., Holland, S.T., Hoversten, E.A., Kuin, N.P.M., Marshall, F.E., Roming, P.W.A., Still, M., Vanden Berk, D.E., Zane, S., Nousek, J.A.: Mon. Not. R. Astron. Soc. 395(1), 490 (2009). doi:10.1111/j.1365-2966.2009.14544.x. http://mnras.oxfordjournals.org/content/395/1/490.full.pdf+html

    Article  ADS  Google Scholar 

  • Paciesas, W.S., Meegan, C.A., von Kienlin, A., Bhat, P.N., Bissaldi, E., Briggs, M.S., Burgess, J.M., Chaplin, V., Connaughton, V., Diehl, R., Fishman, G.J., Fitzpatrick, G., Foley, S., Gibby, M., Giles, M., Goldstein, A., Greiner, J., Gruber, D., Guiriec, S., van der Horst, A.J., Kippen, R.M., Kouveliotou, C., Lichti, G., Lin, L., McBreen, S., Preece, R.D., Rau, A., Tierney, D., Wilson-Hodge, C.: Astrophys. J. Suppl. Ser. 199(1), 18 (2012)

    Article  ADS  Google Scholar 

  • Pal’shin, V.D., Hurley, K., Svinkin, D.S., Aptekar, R.L., Golenetskii, S.V., Frederiks, D.D., Mazets, E.P., Oleynik, P.P., Ulanov, M.V., Cline, T., Mitrofanov, I.G., Golovin, D.V., Kozyrev, A.S., Litvak, M.L., Sanin, A.B., Boynton, W., Fellows, C., Harshman, K., Trombka, J., McClanahan, T., Starr, R., Goldsten, J., Gold, R., Rau, A., von Kienlin, A., Savchenko, V., Smith, D.M., Hajdas, W., Barthelmy, S.D., Cummings, J., Gehrels, N., Krimm, H., Palmer, D., Yamaoka, K., Ohno, M., Fukazawa, Y., Hanabata, Y., Takahashi, T., Tashiro, M., Terada, Y., Murakami, T., Makishima, K., Briggs, M.S., Kippen, R.M., Kouveliotou, C., Meegan, C., Fishman, G., Connaughton, V., Boër, M., Guidorzi, C., Frontera, F., Montanari, E., Rossi, F., Feroci, M., Amati, L., Nicastro, L., Orlandini, M., Monte, E.D., Costa, E., Donnarumma, I., Evangelista, Y., Lapshov, I., Lazzarotto, F., Pacciani, L., Rapisarda, M., Soffitta, P., Cocco, G.D., Fuschino, F., Galli, M., Labanti, C., Marisaldi, M., Atteia, J.-L., Vanderspek, R., Ricker, G.: Astrophys. J. Suppl. Ser. 207(2), 38 (2013)

    Article  ADS  Google Scholar 

  • Phillips, M.M.: Acad. Publ. J. 413, 105 (1993). doi:10.1086/186970

    Google Scholar 

  • Sakamoto, T., Barthelmy, S.D., Baumgartner, W.H., Cummings, J.R., Fenimore, E.E., Gehrels, N., Krimm, H.A., Markwardt, C.B., Palmer, D.M., Parsons, A.M., Sato, G., Stamatikos, M., Tueller, J., Ukwatta, T.N., Zhang, B.: Astrophys. J. Suppl. Ser. 195(1), 2 (2011)

    Article  ADS  Google Scholar 

  • Salvaterra, R., Della Valle, M., Campana, S., Chincarini, G., Covino, S., D’Avanzo, P., Fernández-Soto, A., Guidorzi, C., Mannucci, F., Margutti, R., Thöne, C.C., Antonelli, L.A., Barthelmy, S.D., de Pasquale, M., D’Elia, V., Fiore, F., Fugazza, D., Hunt, L.K., Maiorano, E., Marinoni, S., Marshall, F.E., Molinari, E., Nousek, J., Pian, E., Racusin, J.L., Stella, L., Amati, L., Andreuzzi, G., Cusumano, G., Fenimore, E.E., Ferrero, P., Giommi, P., Guetta, D., Holland, S.T., Hurley, K., Israel, G.L., Mao, J., Markwardt, C.B., Masetti, N., Pagani, C., Palazzi, E., Palmer, D.M., Piranomonte, S., Tagliaferri, G., Testa, V.: Nature 461, 1258 (2009). doi:10.1038/nature08445. 0906.1578

    Article  ADS  Google Scholar 

  • Schönfelder, V., Bennett, K., Blom, J.J., Bloemen, H., Collmar, W., Connors, A., Diehl, R., Hermsen, W., Iyudin, A., Kippen, R.M., Knödlseder, J., Kuiper, L., Lichti, G.G., McConnell, M., Morris, D., Much, R., Oberlack, U., Ryan, J., Stacy, G., Steinle, H., Strong, A., Suleiman, R., van Dijk, R., Varendorff, M., Winkler, C., Williams, O.R.: Astron. Astrophys. Suppl. Ser. 143(2), 145 (2000). doi:10.1051/aas:2000101

    Article  ADS  Google Scholar 

  • Schulze, S., Klose, S., Björnsson, G., Jakobsson, P., Kann, D.A., Rossi, A., Krühler, T., Greiner, J., Ferrero, P.: Astron. Astrophys. 526, 23 (2011). doi:10.1051/0004-6361. 1010.4057

    Article  ADS  Google Scholar 

  • Staley, T.D., Titterington, D.J., Fender, R.P., Swinbank, J.D., van der Horst, A.J., Rowlinson, A., Scaife, A.M.M., Grainge, K.J.B., Pooley, G.G.: Mon. Not. R. Astron. Soc. 428, 3114 (2013). doi:10.1093/mnras/sts259. 1211.3115

    Article  ADS  Google Scholar 

  • Stern, B.E., Tikhomirova, Y., Kompaneets, D., Svensson, R., Poutanen, J.: Acad. Publ. J. 563(1), 80 (2001)

    Google Scholar 

  • Strong, I.B., Klebesadel, R.W., Olson, R.A.: Astrophys. J. Lett. 188, 1 (1974). doi:10.1086/181415

    Article  ADS  Google Scholar 

  • Terekhov, O.V., Denisenko, D.V., Lobachev, V.A., Syunyaev, R.A., Kovtun, A.V., Kuznetsov, A.V., Barat, C., Dezalay, J.-P., Talon, R.: Astron. Lett. 20, 265 (1994)

    ADS  Google Scholar 

  • Terekhov, O.V., Denisenko, D.V., Lobachev, V.A., Syunyaev, R.A., Kuznetsov, A.V., Tkachenko, A.Y., Barat, C., Dezalay, J.-P., Talon, R.: Astron. Lett. 21, 73 (1995)

    ADS  Google Scholar 

  • Tkachenko, A.Y., Terekhov, O.V., Sunyaev, R.A., Kuznetsov, A.V., Barat, C., Dezalay, J.-P., Vedrenne, G., Talon, R.: Astron. Lett. 24, 722 (1998)

    ADS  Google Scholar 

  • Tkachenko, A.Y., Terekhov, O.V., Sunyaev, R.A., Kuznetsov, A.V., Barat, C., Dezalay, J.-P., Vedrenne, G.: Astron. Lett. 28, 353 (2002). doi:10.1134/1.1484135

    Article  ADS  Google Scholar 

  • von Kienlin, A., Meegan, C.A., Paciesas, W.S., Bhat, P.N., Bissaldi, E., Briggs, M.S., Burgess, J.M., Byrne, D., Chaplin, V., Cleveland, W., Connaughton, V., Collazzi, A.C., Fitzpatrick, G., Foley, S., Gibby, M., Giles, M., Goldstein, A., Greiner, J., Gruber, D., Guiriec, S., van der Horst, A.J., Kouveliotou, C., Layden, E., McBreen, S., McGlynn, S., Pelassa, V., Preece, R.D., Rau, A., Tierney, D., Wilson-Hodge, C.A., Xiong, S., Younes, G., Yu, H.-F.: Astrophys. J. Suppl. Ser. 211(1), 13 (2014)

    Article  ADS  Google Scholar 

  • Wrobel, J.M., Walker, R.C.: In: Taylor, G.B., Carilli, C.L., Perley, R.A. (eds.) Synthesis Imaging in Radio Astronomy II. Astronomical Society of the Pacific Conference Series, vol. 180, p. 171 (1999)

    Google Scholar 

Download references

Acknowledgements

This research used data and software provided by the following institutes and databases: the High Energy Astrophysics Science Archive Research Center (HEASARC) at the Astrophysics Science Division, NASA/GSFC; the High Energy Astrophysics Division at the Smithsonian Astrophysical Observatory; the SIMBAD database at the CDS, Strasbourg, France; the UK Swift Science Data Centre at the University of Leicester; the VizieR catalogue access tool, CDS, Strasbourg, France. The original description of the VizieR service is published in A&AS 143, 23.

This research used also the Jochen Grainer’s Table on http://www.mpe.mpg.de/~jcg/grbgen.html.

The Authors acknowledge the Società Aerospaziale Mediterranea S.c.r.l. (SAM), the European Industrial Engineering S.r.l. (EIE-Group) companies for technological information and the Regione Campania (Dottorato in Azienda project), the Progetto R.A.D.I.O.—Radiotelescopi per Azioni di Internazionalizzazione e cooperazione, POR CAMPANIA FESR 2007–2013 O. O. 2.1.

The Authors acknowledge also M. G. Dainotti, T. Di Girolamo, P. Millici for discussions and suggestions on the topics. SC acknowledges financial support of INFN (iniziativa specifica TEONGRAV). This article is also based upon work from COST action CA15117 (CANTATA), supported by COST (European Cooperation in Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Capozziello.

Appendices

Appendix A

Table 2 is the merging of catalogues mentioned and explained in part in Sec. 3.1. For each row there are seven columns. The first two columns are GRB coordinates (RA J2000 and DEC J2000) in decimal degrees; the third, fourth and fifth are the acquisition time with year, month, day (days are decimal and contain information about hours, minutes and seconds); the sixth column is the referring mission and, finally, the source name.

In the sixth column, only one of the missions which detected GRBs is reported. As previously mentioned, some GRBs have been detected by more than one mission, hence they could be reported in more than one catalogue.

As for source name, we reported the same name of the catalogue considered in the sixth column. No official names were found for the BNT GRBs, therefore only “GRB” has been written in the last column. Furthermore, BT source names are the same used in the HEASARC web table, with a final dash instead of the standard progressive letters. However, sources have been sorted by detection time, so it is possible to read all GRBs in a time sequence.

The references used for every mission are reported in Table 2:

The following list explains how matchings among catalogues have been achieved. As mentioned in Sec. 3.1, different GRB catalogues, gathering in each list only a single mission (the only exception is CGRO with two different catalogues). Equal events from various tables have been made as one. For this purpose, lists have been matched each other, using the following criteria:

  • The Agile list is matched with all other lists. A GRB is the same if it exploded within 0.005 days with respect to another one, and if they have a difference \(\leq 90^{\circ }\) in RA and in DEC each other. Even if the Agile angular resolution is within a few arcmin, many GRBs are localized by satellite triangulations and other satellite are not so fine in localization accuracy. As a check, a larger angular range has been used. More details about this mission can be read at the ASI web site.

  • The BeppoSAX list is matched with all CGRO lists, as explained previously (time delay of 0.005 and angular range \({\leq} 146^{\circ }\)).

  • Among BATSE/CGRO lists no change is adopted for the criterion used by Stern et al. (2001).

  • Swift list is matched with Fermi one, with a delay of 0.005 days and angular range of \(45^{\circ }\).

  • The GRANAT list is matched with all other lists, using only a time delay of 0.005 days.

  • The HETE-2 list is matched with BeppoSAX and Swift lists: angular range of \(83^{\circ }\) and time delay of 0.005 days.

  • The INTEGRAL list is matched with Hete-2, Fermi and Swift lists. Time delay 0.005 and angular range \(90^{\circ }\).

  • The Konus/Wind list is matched with all other lists, with a delay 0.005 and angular range \(90^{\circ }\).

It is worth noticing that the RA and DEC difference thresholds depend on the largest pointing-range error among different satellites. For example, by matching three catalogues from BeppoSAX, Swift and HETE-2, where the worst pointings has a range error respectively of \(85^{\circ}\), \(67'\) and \(11.9^{\circ}\), the value \(85^{\circ}\) is the threshold range. One has to choose this value in order to have the worst case. However, in the reported cases, the most important threshold is the time threshold. The time delay of 0.005 days (that is \({\sim} 7\) minutes between an explosion and the next) is in common. We changed angular ranges instrument by instrument, depending on their error positions, or FoV, or angular resolution. These angular values are probably large, but a conservative case has been preferred. However, the most relevant matching filter was the time delay and, that other criteria could be used.

Appendix B

GRBs are observed in different bands and there is a preferred measure of unit for each band. A measure can usually be given either in luminosity \(L\) (erg s−1 Hz−1), fluence \(S\) (erg cm−2), flux \(F\) (erg cm−2 s−1) or flux density \(F_{\nu }~(\mbox{W}\,\mbox{m}^{-2}\,\mbox{Hz}^{-1})\). Since we want to compare different wavelengths to each other, we must have the same measure unit. For convenience, the relations among there units is written here:

$$\begin{aligned} &L = \frac{4 \pi F_{\nu }d_{L}^{2}}{1 + z}, \end{aligned}$$
(20)
$$\begin{aligned} &F= F_{\nu } \Delta \nu, \end{aligned}$$
(21)
$$\begin{aligned} &S = F \Delta t , \end{aligned}$$
(22)

where \(\Delta \nu \) and \(\Delta t\) are respectively the bandwidth and the integration time during the acquisition.

In order to plot the SED of the 95 GRBs detected by Chandra and Frail (2012), we choose to convert everything into fluxes. Taking into account tables 1 and 4 in that work, from the fluence at 15–150 keV we can obtain the flux by dividing by the \(T_{90}\). Furthermore, from data in flux density, we can calculate the flux of the source knowing the bandwidth (100 MHz at radio band and R-bandFootnote 15 at optical wavelengths). The conversion from energies into frequencies, or wavelengths, is given by using the Planck constant

$$ E = h \nu = h c \lambda. $$
(23)

Finally, the flux density is expressed in μ Jy, so, in cgs system, it is

$$ 1~\upmu \,\mbox{Jy} = 10^{-6}~\mbox{Jy} = 10^{-32} \frac{\mathrm{W}}{ \text{m}^{2}\,\mbox{Hz}} = 10^{-29} \frac{\text{erg}}{\text{s}\,\text{cm}^{2}\text{Hz}}. $$
(24)

In practice, if one has the R-band flux density \(F_{\nu }= 6.5~\upmu \,\mbox{Jy}\), it has be multiplied by the bandwidth 138 nm (converted into cgs system and frequency, it is \(138 \cdot 10^{-7}~\text{cm} \times 3 \cdot 10^{10}~\text{cm}/\text{s}\)) and the conversion factor is \(10^{-29}~\mbox{erg}\,\mbox{s}^{-1}\,\mbox{cm}^{-2}\,\mbox{Hz}^{-1}\). Thus the result in flux is \(F = 2.691 \cdot 10^{-23}~\mbox{erg}\,\mbox{cm}^{-2}\,\mbox{s}^{-1}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruggeri, A.C., Capozziello, S. Possible gamma-ray burst radio detections by the Square Kilometre Array. New perspectives. Astrophys Space Sci 361, 279 (2016). https://doi.org/10.1007/s10509-016-2866-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-016-2866-1

Keywords

Navigation