Skip to main content
Log in

Orbit classification in the planar circular Pluto-Charon system

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

We numerically investigate the orbital dynamics of a spacecraft, or a comet, or an asteroid in the Pluto-Charon system in a scattering region around Charon using the planar circular restricted three-body problem. The test particle can move in bounded orbits around Charon or escape through the necks around the Lagrangian points \(L_{1}\) and \(L_{2}\) or even collide with the surface of Charon. We explore four of the five possible Hill’s regions configurations depending on the value of the Jacobi constant which is of course related with the total orbital energy. We conduct a thorough numerical analysis on the phase space mixing by classifying initial conditions of orbits and distinguishing between three types of motion: (i) bounded, (ii) escaping and (iii) collisional. In particular, we locate the different basins and we relate them with the corresponding spatial distributions of the escape and collision times. Our results reveal the high complexity of this planetary system. Furthermore, the numerical analysis shows a strong dependence of the properties of the considered basins with the total orbital energy, with a remarkable presence of fractal basin boundaries along all the regimes. Our results are compared with earlier ones regarding the Saturn-Titan planetary system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The set of initial conditions of orbits which lead to a certain final state (escape, collision or bounded motion) is defined as a basin.

  2. Obviously if we numerically integrate these initial conditions we will see that they lead to immediate collision to Charon.

  3. It should be emphasized that when we state that an area is fractal we simply mean that it has a fractal-like geometry without conducting any specific calculations as in Aguirre et al. (2009).

References

  • Aguirre, J., Viana, R.L., Sanjuán, M.A.F.: Fractal structures in nonlinear dynamics. Rev. Mod. Phys. 81, 333–386 (2009)

    Article  ADS  Google Scholar 

  • Barrio, R., Blesa, F., Serrano, S.: Fractal structures in the Hénon-Heiles Hamiltonian. Europhys. Lett. 82, 10003 (2008)

    Article  Google Scholar 

  • Darriba, L.A., Maffione, N.P., Cincotta, P.M., Giordano, C.M.: Comparative study of variational chaos indicators and ODEs’ numerical integrators. International Journal of Bifurcation and Chaos 22, 1230033 (2012)

    Article  MathSciNet  Google Scholar 

  • Canup, R.M.: A giant impact origin of Pluto-Charon. Science 307, 546–550 (2005)

    Article  ADS  Google Scholar 

  • Christy, J.W., Harrington, R.S.: The satellite of Pluto. Astron. J 83, 1005–1008 (1978)

    Article  ADS  Google Scholar 

  • de Assis, S.C., Terra, M.O.: Escape dynamics and fractal basin boundaries in the planar Earth-Moon system. Celest. Mech. Dyn. Astron. 120, 105–130 (2014)

    Article  ADS  Google Scholar 

  • Gómez, G., Llibre, J., Martínez, R., Simó, C.: Dynamics and Mission Design Near Libration Points, Volume I: Fundamentals: The Case of Collinear Libration Points. World Scientific, Singapore (2001a)

    Google Scholar 

  • Gómez, G., Simó, C., Llibre, J., Mart´nez, R.: Dynamics and Mission Design Near Libration Points, Volume II: Fundamentals: The Case of Triangular Libration Points. World Scientific, Singapore (2001b)

    Google Scholar 

  • Gómez, G., Jorba, A., Simó, C., Masdemont, J.: Dynamics and Mission Design Near Libration Points, Volume III: Advanced Methods for Collinear Points. World Scientific, Singapore (2001c)

    Google Scholar 

  • Gómez, G., Jorba, A., Simó, C., Masdemont, J.: Dynamics and Mission Design Near Libration Points, Volume IV: Advanced Methods for Triangular Points. World Scientific, Singapore (2001d)

    Google Scholar 

  • Gómez, G., Koon, W., Lo, M., Marsden, J., Masdemont, J., Ross, S.: Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity 17, 1571–1606 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Hénon, M.: Numerical exploration of the restricted problem. V. Astron. Astrophys. 1, 223–238 (1969)

    MATH  ADS  Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10, 427–470 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Li, W., Huang, H., Peng, F.: Trajectory classification in circular restricted three-body problem using support vector machine. Advances in Space Research 56, 273–280 (2015)

    Article  ADS  Google Scholar 

  • Nagler, J.: Crash test for the Copenhagen problem. Phys. Rev. E 69, 066218 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  • Nagler, J.: Crash test for the restricted three-body problem. Phys. Rev. E 71, 026227 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  • NASA Space Science Data Coordinated Archive (2015). http://nssdc.gsfc.nasa.gov/

  • Null, G.W., Owen, W.M., Synnott, S.P.: Masses and densities of Pluto and Charon. Astron. J. 105, 2319–2335 (1993)

    Article  ADS  Google Scholar 

  • Press, H.P., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in FORTRAN 77, 2nd edn. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  • Richardson, A.S., Finn, J.M.: Symplectic integrators with adaptive time steps. Plasma Phys. Control. Fusion 54, 014004 (2012)

    Article  ADS  Google Scholar 

  • Showalter, M.R., Hamilton, D.P.: Resonant interactions and chaotic rotation of Pluto’s small moons. Nature 522, 45–49 (2015)

    Article  ADS  Google Scholar 

  • Simó, C., Stuchi, T.: Central stable/unstable manifolds and the destruction of KAM tori in the planar Hill problem. Physica D 140, 1–32 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Stern, S.A., Spencer, J., Horizons, N.: The first reconnaissance mission to bodies in the Kuiper belt. Earth Moon and Planets 92, 477–482 (2003)

    Article  ADS  Google Scholar 

  • Stern, S.A., Weaver, H.A., Steffl, A.J., et al.: A giant impact origin for Pluto’s small moons and satellite multiplicity in the Kuiper belt. Nature 439, 946–948 (2006)

    Article  ADS  Google Scholar 

  • Stern, S.A., Mutchler, M.J., Weaver, H.A., Steffl, A.J.: The positions, colors, and photometric variability of Pluto’s small satellites from HST observations: 2005–2006. In: Lunar and Planetary. Institute Science Conference Abstracts, vol. 38, p. 1722 (2007)

    Google Scholar 

  • Stuchi, T.J., Yokohama, A.A., et al.: Dynamics of a spacecraft and normalization around Lagrangian points in the Neptune-Triton system. Adv. Space Res. 42, 1715–1722 (2008)

    Article  ADS  Google Scholar 

  • Szebehely, V.: Theory of Orbits. Academic Press, New York (1967)

    Google Scholar 

  • Weaver, H.A., Stern, S.A., Mutchler, M.J., et al.: S/2005 P 1 and S/2005 P 2. IAU Circ. 8625, 1 (2005)

    ADS  Google Scholar 

  • Weaver, H.A., Stern, S.A., Mutchler, M.J., et al.: Discovery of two new satellites of Pluto. Nature 439, 943–945 (2006)

    Article  ADS  Google Scholar 

  • Weaver, H.A., Gibson, W.C., Tapley, M.B., Young, L.A., Stern, S.A.: Overview of the new horizons science payload. Tech. Rep., Johns Hopkins University Applied Physics Laboratory (2007)

  • Young, L.A., Olkin, C.B., Elliot, J.L., Tholen, D.J., Buie, M.W.: The Charon-Pluto mass ratio from MKO astrometry. Icarus 108, 186–199 (1994)

    Article  ADS  Google Scholar 

  • Zotos, E.E.: Crash test for the Copenhagen problem with oblateness. Celest. Mech. Dyn. Astron. 122, 75–99 (2015a)

    Article  MathSciNet  ADS  Google Scholar 

  • Zotos, E.E.: Orbital dynamics in the planar Saturn-Titan system. Astrophys. Space Sci. 358, 4 (2015b). Paper I

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would like to express my warmest thanks to the anonymous referee for the careful reading of the manuscript and for all the apt suggestions and comments which allowed us to improve both the quality and the clarity of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Euaggelos E. Zotos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zotos, E.E. Orbit classification in the planar circular Pluto-Charon system. Astrophys Space Sci 360, 7 (2015). https://doi.org/10.1007/s10509-015-2523-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-015-2523-0

Keywords

Navigation