Skip to main content
Log in

Triphala involved in reducing the susceptibility of Nile tilapia (Oreochromis niloticus) fingerlings to Saprolegnia ferax infection by boosting immune and antioxidant responses, improving growth performance, histological improvement, and gene expression indicators

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

This study investigated the effects of different dietary levels of Triphala fruit powder on the growth performance, histology, serum parameters, gene expression indicators, and survival of Nile tilapia (Oreochromis niloticus) fingerlings against Saprolegnia ferax infection. The fish were fed with either a control diet (without Triphala fruit powder addition) or three experimental diets including 1, 2, and 3% of TFP over a 60-day period. Two hundred and forty healthy fish (28.0 ± 0.2 g) were stocked in 12 tanks, 20 fish per tank. Dietary TFP supplementation significantly improved growth performance and feed efficiency to the un-treated group (P < 0.05). All Triphala fruit powder dietary groups had a significant higher amylase activity and lower levels of ALT, AST, and cholesterol than the control group (P < 0.05). The Triphala fruit powder treatment (3%) resulted in a significant increase in packed cell volume, red blood cell count, haemoglobin, and monocyte values compared to other groups (P < 0.05). The study reported significant (P < 0.05) improvements in immune response and increased levels of haemoglobin, white and red blood cells, albumin, globulin, and total protein for the Triphala dietary groups. In all Triphala dietary groups, the mRNA expression levels of the growth-related (growth hormone (GH) and insulin-like growth factor 1 (IGF-1)) and immune-related genes (cc-chemokine, intereluekin-1β (IL-1β), and intereluekin-8 (IL-8)) were significantly (P < 0.05) upregulated compared to the control groups. After exposure to Saprolegnia ferax infection, the control group exhibited a higher mortality rate (up to 75%) than the Triphala-treated groups. In conclusion, this study demonstrated that dietary inclusion of Triphala at an optimal level of 3% improved the growth performance and immune response of Nile tilapia (Oreochromis niloticus) fingerlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data regarding this study are presented in the paper.

References

  • Abbas A, Lichtman A, & Pillai S (2014) Cellular and molecular immunology E-book. Elsevier Health Sciences.

  • Abdel-Tawwab M, Shukry M, Farrag FA, El-Shafai NM, Dawood MA, Abdel-Latif HM (2021) Dietary sodium butyrate nanoparticles enhanced growth, digestive enzyme activities, intestinal histomorphometry, and transcription of growth-related genes in Nile tilapia juveniles. Aquaculture 536:736467

    Article  CAS  Google Scholar 

  • Abhijith BD, Ramesh M, Poopal RK (2016) Responses of metabolic and antioxidant enzymatic activities in gill, liver and plasma of Catla catla during methyl parathion exposure. The J Basic App Zool 77:31–40

    Article  CAS  Google Scholar 

  • Adeli A, Shamloofar M, Akrami R (2021) Dietary effect of lemon verbena (Aloysia triphylla) extract on growth performance, some haematological, biochemical, and non-specific immunity and stocking density challenge of rainbow trout juveniles (Oncorhynchus mykiss). J Appl Anim Res 49(1):382–390

    Article  CAS  Google Scholar 

  • Aebi H. (1984) [13] Catalase in vitro. In Methods in enzymology (105, 121–126). Academic press.‏

  • Ahmad MH, Abdel-Tawwab M, Khattab YA (2004) Effect of dietary protein levels on growth performance and protein utilisation in Nile tilapia (Oreochromis niloticus L.) with different initial body weights. In The sixth international symposium on tilapia in aquaculture, Manila, Philippine. pp 249–263

    Google Scholar 

  • Ali FF, Al-Taee SK, Al-Jumaa ZM (2020) Isolation, molecular identification, and pathological lesions of Saprolegnia spp. isolated from common carp, Cyprinus carpio in floating cages in Mosul. Iraq Vet World 13(12):2759

    Article  PubMed  CAS  Google Scholar 

  • AOAC., or Association of Official Analytical Chemists. (1997) Animal feed official methods of analysis, 16th Edition. Arlington, VA, USA. 30

  • Barde RD, Deshpande M, Nagthane N, Darak O, Baig MMV (2020) A review of Saprolegnia infection in freshwater fishes and control of the saprolegniosis. Sustainable Humanosphere 16(1):702–711

    Google Scholar 

  • Belapurkar P, Goyal P, Tiwari-Barua P (2014) Immunomodulatory effects of Triphala and its individual constituents: a review. Indian J Pharm Sci 76(6):467

    PubMed  PubMed Central  Google Scholar 

  • Chandran U, Mehendale N, Patil S, Chaguturu R, & Patwardhan, B (2017) Network pharmacology. Innov Approach Drug Discovery 127.

  • Chen B, Xiao W, Zou Z, Zhu J, Li D, Yu J, Yang H (2022) Comparing transcriptomes reveals key metabolic mechanisms in superior growth performance Nile tilapia (Oreochromis niloticus). Front Genet 13:879570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cruz EMV, Brown CL, Luckenbach JA, Picha ME, Bolivar RB, Borski RJ (2006) Insulin-like growth factor-I cDNA cloning, gene expression and potential use as a growth rate indicator in Nile tilapia. Oreochromis Niloticus Aquaculture 251(2–4):585–595

    Article  Google Scholar 

  • Dacie S, Lewis S (1991) Practical hematology, 7th edn. Churchill Livingstone, London

    Google Scholar 

  • Dawood MA, AbdEl-Kader MF, Moustafa EM, Gewaily MS, Abdo SE (2020a) Growth performance and hemato-immunological responses of Nile tilapia (Oreochromis niloticus) exposed to deltamethrin and fed immunobiotics. Environ Sci Pollut Res 27:11608–11617

    Article  CAS  Google Scholar 

  • Dawood MA, Zommara M, Eweedah NM, Helal AI (2020b) Synergistic effects of selenium nanoparticles and vitamin E on growth, immune-related gene expression, and regulation of antioxidant status of Nile tilapia (Oreochromis niloticus). Biol Trace Elem Res 195:624–635

    Article  PubMed  CAS  Google Scholar 

  • Deck CA, Salger SA, Reynolds HM, Tada MD, Severance ME, Ferket P., ... & Borski RJ (2023) Nutritional programming in Nile tilapia (Oreochromis niloticus): effect of low dietary protein on growth and the intestinal microbiome and transcriptome. Plos One. 18(10):e0292431.

  • Van Doan H, Hoseinifar SH, Harikrishnan R, Khamlor T, Punyatong M, Tapingkae W, ... & El-Haroun E (2021) Impacts of pineapple peel powder on growth performance, innate immunity, disease resistance, and relative immune gene expression of Nile tilapia, Oreochromis niloticus. Fish & Shellfish Immunol. 114:311–319.

  • Doymas BT, Bay DD, Carter RJ, Schaffer R (1981) Determination of total serum protein. Clin Chem 27:1642–1643

    Article  Google Scholar 

  • Eissa ESH, Ahmed NH, El-Badawi AA, Munir MB, Abd Al-Kareem OM, Eissa ME, ... & Sakr SES (2022) Assessing the influence of the inclusion of Bacillus subtilis AQUA‐GROW® as feed additive on the growth performance, feed utilisation, immunological responses and body composition of the Pacific white shrimp, Litopenaeus vannamei. Aquaculture Research. 53(18):6606–6615

  • Eissa ESH, Ezzo OH, Khalil HS, Tawfik WA, El‐Badawi AA, Abd Elghany NA, ... & Hamouda AH. (2022) The effect of dietary nanocurcumin on the growth performance, body composition, haemato‐biochemical parameters and histopathological scores of the Nile tilapia (Oreochromis niloticus) challenged with Aspergillus flavus. Aquaculture Research. 53(17):6098–6111

  • Eissa ESH, Ahmed RA, Abd Elghany NA, Elfeky A, Saadony S, Ahmed NH, ... & Ayoub HF (2023d) Potential symbiotic effects of β-1, 3 glucan, and fructooligosaccharides on the growth performance, immune response, redox status, and resistance of Pacific white shrimp, Litopenaeus vannamei to Fusarium solani Infection. Fishes. 8(2):105.

  • Eissa ESH, Alaidaroos BA, Jastaniah SD, Munir MB, Shafi ME, Abd El-Aziz YM., ... & Saadony S (2023e) Dietary effects of nano curcumin on growth performances, body composition, blood parameters and histopathological alternation in red tilapia (Oreochromis sp.) challenged with Aspergillus flavus. Fishes. 8(4):208

  • Eissa ESH, Aljarari RM, Elfeky A, Abd El-Aziz YM, Munir MB, Jastaniah SD, ... & ElBanna NI. (2023b) Protective effects of Chlorella vulgaris as a feed additive on growth performance, immunity, histopathology, and disease resistance against Vibrio parahaemolyticus in the Pacific white shrimp. Aquaculture International, 1–20.

  • Eissa ESH, Bazina WK, Abd El-Aziz YM, Abd Elghany NA, Tawfik WA, Mossa MI, ... & Khalil HS (2023a) Nano-selenium impacts on growth performance, digestive enzymes, antioxidant, immune resistance and histopathological scores of Nile tilapia, Oreochromis niloticus against Aspergillus flavus infection. Aquaculture International, 1–25.

  • Eissa ESH, Elbahnaswy S, El-Baz AH, El-Haroun E, Ashour M, Mansour AT, ... & Eldessouki EA (2023c) Effects of dietary commercial phytobiotic “Sanacore® GM” on Pacific white shrimp (Litopenaeus vannamei) growth, immune response, redux status, intestinal health, and disease resistance against Fusarium solani. Aquaculture International, 1–20.

  • Eissa ESH, El-Sayed AM, Ghanem SF, Dighiesh HS, Abd Elnabi HE, Hendam BM, Elleithy AA, Eissa MEH, Abd El-Aziz YM (2024) Dietary mannan-oligosaccharides enhance hematological and biochemical parameters, reproductive physiology, and gene expression of hybrid red tilapia (Oreochromis niloticus x O. mossambicus), Aquaculture, 740453, ISSN 0044–8486, https://doi.org/10.1016/j.aquaculture.2023.740453.

  • El Gamal SA, Adawy RS, Zaki VH, Zahran E (2023) Host–pathogen interaction unveiled by immune, oxidative stress, and cytokine expression analysis to experimental Saprolegnia parasitica infection in Nile tilapia. Sci Rep 13(1):9888

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Elameen A, Stueland S, Kristensen R, Fristad RF, Vrålstad T, Skaar I (2021) Genetic analyses of saprolegnia strains isolated from salmonid fish of different geographic origin document the connection between pathogenicity and molecular diversity. Journal of Fungi 7(9):713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Leithy AA, Hemeda SA, El Naby WSA, El Nahas AF, Hassan, SA, Awad ST, ... & Helmy ZA (2019) Optimum salinity for Nile tilapia (Oreochromis niloticus) growth and mRNA transcripts of ion-regulation, inflammatory, stress- and immune-related genes. Fish Physiol Biochem. 45:1217–1232.

  • FAO. (2009) Oreochromis niloticus. In Cultured aquatic species fact sheets. Text by Rakocy, J. E. Edited and compiled by Valerio Crespi and Michael New. CD-ROM (multilingual).

  • FAO. The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable development goals. Rome 2020. Licence: CC BY-NC-SA 3.0 IGO.

  • Fath El-Bab AF, Majrashi KA, Sheikh HM, Shafi ME, El-Ratel IT, Neamat-Allah AN, ... & Naiel MA (2022) Dietary supplementation of Nile tilapia (Oreochromis niloticus) with β-glucan and/or Bacillus coagulans: synergistic impacts on performance, immune responses, redox status and expression of some related genes. Frontiers Vet Sci. 9, 1011715.

  • Feldman BF, Zink JG, Jain NC (2000) Schalm’s veterinary hematology, 5th edn. Lippincott Williams and Wilkins, New York

    Google Scholar 

  • Haugland GT, Jakobsen RA, Vestvik N, Ulven K, Stokka L, & Wergeland HI. (2012) Phagocytosis and respiratory burst activity in lumpsucker (Cyclopterus lumpus L.) leucocytes analysed by flow cytometry. PloS One. 7(10):e47909.

  • Hendam BM, Munir MB, Eissa ME, El-Haroun E, van Doan H, Chung TH, & Eissa ESH. (2023) Effects of water additive probiotic, Pediococcus acidilactici on growth performance, feed utilisation, hematology, gene expression and disease resistance against Aspergillus flavus of Nile tilapia (Oreochromis niloticus). Animal Feed Science and Technology, 115696.

  • Hirayama D, Iida T, Nakase H (2017) The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int J Mol Sci 19(1):92

    Article  PubMed  PubMed Central  Google Scholar 

  • Hünniger K, Kurzai O (2019) Phagocytes as central players in the defence against invasive fungal infection. In Seminars in Cell & Developmental Biology, vol 89. Academic Press, pp 3–15

    Google Scholar 

  • Ighodaro OM, Akinloye OA (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria J Med 54(4):287–293

    Article  Google Scholar 

  • Jantrapirom S, Hirunsatitpron P, Potikanond S, Nimlamool W, Hanprasertpong N (2021) Pharmacological benefits of Triphala: a perspective for allergic rhinitis. Front Pharmacol 12:628198

    Article  PubMed  PubMed Central  Google Scholar 

  • Javed M, Ahmad I, Ahmad A, Usmani N, Ahmad M (2016) Studies on the alterations in haematological indices, micronuclei induction and pathological marker enzyme activities in Channa punctatus (spotted snakehead) perciformes, channidae exposed to thermal power plant effluent. Springerplus 5(1):761. https://doi.org/10.1186/s40064-016-2478-9.PMID:27386247;PMCID:PMC4912529

    Article  PubMed  PubMed Central  Google Scholar 

  • Jayasree S1, Usha S, Akhila T (2015) Immunomodulatory effect of Triphala bio fortification in Oreochromis mossambicus. International Journal of Science and Research (IJSR), 6(14).

  • Kalaiselvan S, Rasool MK (2016) Triphala herbal extract suppresses inflammatory responses in LPS-stimulated RAW 264.7 macrophages and adjuvant-induced arthritic rats via inhibition of NF-κB pathway. J Immunotoxicol 13(4):509–525

    Article  PubMed  CAS  Google Scholar 

  • Kawahara E, Ueda T, Nomura S (1991) In vitro phagocytic activity of white-spotted char blood cells after injection with Aeromonas salmonicida extracellular products. Fish Pathol 26(4):213–214

    Article  Google Scholar 

  • Kembou-Ringert JE, Steinhagen D, Thompson KD, Daly JM, & Adamek M (2023) Immune responses to Tilapia lake virus infection: what we know and what we don’t know. Frontiers Immunol 14.

  • Konnert GD, Gerrits WJ, Gussekloo SW, Schrama JW (2022) Balancing protein and energy in Nile tilapia feeds: a meta-analysis. Rev Aquac 14(4):1757–1778

    Article  Google Scholar 

  • Kordon AO, Abdelhamed H, Ahmed H, Baumgartner W, Karsi A, Pinchuk LM (2019) Assessment of the live attenuated and wild-type Edwardsiella ictaluri-induced immune gene expression and Langerhans-like cell profiles in the immune-related organs of catfish. Front Immunol 10:392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kordon AO, Pinchuk L, & Karsi A (2022) Adaptive immune system in fish. Turkish J Fisheries Aquat Sci. 22(4).

  • Krogdahl Å, Hemre GI, Mommsen TP (2005) Carbohydrates in fish nutrition: digestion and absorption in postlarval stages. Aquac Nutr 11(2):103–122

    Article  CAS  Google Scholar 

  • Kwandee P, Somnuk S, Wanikorn B, Nakphaichit M, Tunsagool P (2023) Efficacy of Triphala extracts on the changes of obese fecal microbiome and metabolome in the human gut model. J Tradit Complement Med 13(2):207–217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li RX, Chen LY, Limbu SM, Qian YC, Zhou WH, Chen LQ, ... & Du ZY. (2023) High cholesterol intake remodels cholesterol turnover and energy homeostasis in Nile tilapia (Oreochromis niloticus). Marine Life Sci Technol. 5(1):56–74.

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  • Moaheda EHE, Alaryani FS, Elbahnaswy S, Khattab MS, Elfeky, A, AbouelFadl KY, ... & El-Haroun E (2023) Dietary inclusion of Pediococcus acidilactici probiotic promoted the growth indices, hemato-biochemical indices, enzymatic profile, intestinal and liver histomorphology, and resistance of Nile tilapia against Aspergillus flavus. Animal Feed Science and Technology. 306:115814.

  • Moldogazieva NT, Mokhosoev IM, Mel’nikova TI, Porozov YB, Terentiev AA (2019) Oxidative stress and advanced lipoxidation and glycation end products (ALEs and AGEs) in aging and age-related diseases. Oxidative Med Cell Longev 2019

  • Moses M, Chauka LJ, de Koning DJ, Palaiokostas C, Mtolera MS (2021) Growth performance of five different strains of Nile tilapia (Oreochromis niloticus) introduced to Tanzania reared in fresh and brackish waters. Sci Rep 11(1):11147

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Munguti JM, Nairuti R, Iteba JO, Obiero KO, Kyule D, Opiyo MA, ... & Ogello EO (2022) Nile tilapia (Oreochromis niloticus Linnaeus, 1758) culture in Kenya: emerging production technologies and socio‐economic impacts on local livelihoods. Aquac Fish Fisheries. 2(4):265–276

  • Nariya MB, Shukla VJ, Ravishankar B, Jain SM (2011) Comparison of gastroprotective effects of Triphala formulations on stress-induced ulcer in rats. Indian J Pharm Sci 73(6):682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nimse SB, Pal D (2015) Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv 5(35):27986–28006

    Article  ADS  CAS  Google Scholar 

  • NRC, (2011) National. Committee on Animal Nutrition. Board on Agriculture. National Research Council. National Academy Press, Washington DC., USA.

  • Okon EM, Birikorang HN, Munir MB, Kari ZA, Téllez-Isaías G, Khalifa NE, ... & Eissa ESH (2023) A global analysis of climate change and the impacts on oyster diseases. Sustainability. 15(17):12775.

  • Outama P, Le Xuan C, Wannavijit S, Lumsangkul C, Linh NV, Montha N., ... & Van Doan H (2022) Modulation of growth, immune response, and immune-antioxidant related gene expression of Nile tilapia (Oreochromis niloticus) reared under biofloc system using mango peel powder. Fish & Shellfish Immunol. 131:1136–1143.

  • Pathakumari B, Liang G, Liu W (2020) Immune defence to invasive fungal infections: a comprehensive review. Biomed Pharmacother 130:110550

    Article  PubMed  CAS  Google Scholar 

  • Peterson CT, Denniston K, Chopra D (2017) Therapeutic uses of Triphala in ayurvedic medicine. The J Alternative Complement Med 23(8):607–614

    Article  Google Scholar 

  • Phimarn W, Sungthong B, Itabe H (2021) Effects of Triphala on lipid and glucose profiles and anthropometric parameters: a systematic review. J Evidence-Based Integrative Med 26. https://doi.org/10.1177/2515690X211011038

  • Pirarat N, Pinpimai K, Endo M, Katagiri T, Ponpornpisit A, Chansue N, Maita M (2011) Modulation of intestinal morphology and immunity in Nile tilapia (Oreochromis niloticus) by Lactobacillus rhamnosus GG. Res Vet Sci 91(3):e92–e97

    Article  PubMed  CAS  Google Scholar 

  • Prasad S, Srivastava SK (2020) Oxidative stress and cancer: chemopreventive and therapeutic role of Triphala. Antioxidants 9(1):72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prisingkorn W, Rinthong PO, Yuangsoi B, Doolgindachbaporn S, Wiriyapattanasub P, Doan HV, ... & Wongmaneeprateep S (2022) The effects of Terminalia chebula, Terminalia belerica, Phyllanthus emblica and Triphala on the growth performance and immune response in Nile tilapia (Oreochromis niloticus). Aquac Res. 53(2):625–632.

  • Rauta PR, Nayak B, Das S (2012) Immune system and immune responses in fish and their role in comparative immunity study: a model for higher organisms. Immunol Lett 148(1):23–33

    Article  PubMed  CAS  Google Scholar 

  • Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28(1):56–63

    Article  PubMed  CAS  Google Scholar 

  • Rosales C (2018) Neutrophil: a cell with many roles in inflammation or several cell types? Front Physiol 9:113

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Sahu RP, Srivastava SK (2008) Triphala inhibits both in vitro and in vivo xenograft growth of pancreatic tumor cells by inducing apoptosis. BMC Cancer 8:1–16

    Article  Google Scholar 

  • Shoham S, Levitz SM (2005) The immune response to fungal infections. Br J Haematol 129(5):569–582

    Article  PubMed  Google Scholar 

  • Siwicki A, Studnicka M (1987) The phagocytic ability of neutrophils and serum lysozyme activity in experimentally infected carp, Cyprinus carpio L. J Fish Biol 31:57–60

    Article  Google Scholar 

  • Smith NC, Rise ML, Christian SL (2019) A comparison of the innate and adaptive immune systems in cartilaginous fish, ray-finned fish, and lobe-finned fish. Front Immunol 10:2292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stoskopf MK (1993) Fish medicine. Harcourt Brace Jovanovich Inc, Philadelphia. London. Toronto. Montreal. Sydney. Tokyo. WB Saunders company

    Google Scholar 

  • Tarasiuk A, Mosińska P, Fichna J (2018) Triphala: current applications and new perspectives on the treatment of functional gastrointestinal disorders. Chinese Med 13:1–11

    Article  Google Scholar 

  • Thrall MA (2004) Veterinary hematology and clinical chemistry. Lippincott Williams and Wilkins, Maryland, USA

    Google Scholar 

  • Trinder P (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6(1):24–27

    Article  CAS  Google Scholar 

  • Van West P (2006) Saprolegnia parasitica, an oomycete pathogen with a fishy appetite: new challenges for an old problem. Mycologist 20(3):99–104

    Article  Google Scholar 

  • Vranković J, Stanković M, Marković Z (2021) Levels of antioxidant enzyme activities in cultured rainbow trout (Oncorhynchus mykiss) fed with different diet compositions. Bull Europ Ass Fish Pathol 41(4):135–145

    Google Scholar 

  • Wang T, Zhou N, He J, Hao Z, Zhou C, Du Y, ... & Zhang M (2023) Xylanase improves the intestinal barrier function of Nile tilapia (Oreochromis niloticus) fed with soybean (Glycine max) meal. J Animal Sci Biotechnol. 14(1):86.

  • Yaakoub H, Mina S, Calenda A, Bouchara JP, Papon N (2022) Oxidative stress response pathways in fungi. Cell Mol Life Sci 79(6):333

    Article  PubMed  CAS  Google Scholar 

  • Zahran E, Hafez EE, Mohd Altaf Hossain F, Elhadidy M, Shaheen AA (2017) Saprolegniosis in Nile tilapia: identification, molecular characterisation, and phylogenetic analysis of two novel pathogenic Saprolegnia strains. J Aquat Anim Health 29(1):43–49

    Article  PubMed  CAS  Google Scholar 

  • Zhang BY, Cai GH, Yang HL, Nie QJ, Liu ZY, & Sun YZ (2023) New insights on intestinal microorganisms and carbohydrate metabolism in fish. Aquaculture International, 1–20.

Download references

Acknowledgements

The authors extend their appreciation to the Ministry of Education in KSA for funding this research work though the project number KKU-IFP2-P-1.

Author information

Authors and Affiliations

Authors

Contributions

Methodology, software: S.D.J., S.A.H.,. N.A., N.M.A., S.N., N.H.A., G.T.I.; conceptualization, visualization, methodology: H.A.E., A.E.S., E.H.E., H.H.M.; software, validation, formal analysis, investigation, data curation, writing—original draft preparation, writing—review and editing: S.D.J., S.A.H., N.A., N.M.A., S.N., N.H.A., G.T.I; supervision, S.D.J., S.A.H.; project administration: S.D.J., S.A.H. All authors have read and approved to the published version of the manuscript.

Corresponding author

Correspondence to Samyah D. Jastaniah.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of fish were followed by the authors.

Consent for publication

All authors review and approve the manuscript for publication.

Conflict of interest

The authors declare no competing interests.

Informed consent

Not applicable.

Additional information

Handling Editor: Brian Austin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jastaniah, S.D., Hassoubah, S.A., Aljahdali, N. et al. Triphala involved in reducing the susceptibility of Nile tilapia (Oreochromis niloticus) fingerlings to Saprolegnia ferax infection by boosting immune and antioxidant responses, improving growth performance, histological improvement, and gene expression indicators. Aquacult Int (2024). https://doi.org/10.1007/s10499-024-01420-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10499-024-01420-8

Keywords

Navigation