Skip to main content

Advertisement

Log in

Praziquantel against monogeneans of tambaqui (Colossoma macropomum)

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Praziquantel (PZQ) is an anthelminthic drug that has been tested worldwide to treat parasitosis in farmed fish. Information regarding the applicability and sustainability of medications in tambaqui Colossoma macropomum farming is highly needed. This study investigated the effects of PZQ at different concentrations and exposure times on the hematological parameters of tambaqui and the efficacy against monogeneans. The toxicity test with PZQ was conducted at three exposure times (0.5 h, 1 h and 24 h). In each of them, five PZQ concentrations (3.12, 6.25, 12.5, 25 and 50 mg L−1) were evaluated, with a control group, in triplicate, with six fish per unit. The same assays were conducted to evaluate the toxicity of ethanol, used as solvent. Based on the toxicity test and an in vitro test, the efficacy of PZQ against monogeneans in tambaqui was tested in four treatments (6.25, 12.5, 25 and 35 mg L−1), with long bath duration (24 h), with a control group, in triplicate, with six fish per unit. Fish were sampled and subjected to hematological and parasitological analyses. The use of ethanol as solvent did not interfere significantly with the physiology of tambaqui. In the toxicity test with PZQ, the main hematological alterations were those related to the time of exposure, with reduction in hematocrit, hemoglobin and MCHC, in addition to a significant dose and time-dependent alteration in blood glucose. No mortality was observed, except three fish exposed to 50 mg L−1 for 24 h. No treatment removed 100% of the parasites from the gills of tambaqui; however, the lowest concentrations of PZQ were more effective against Anacanthorus sp., removing 61.8% at 12.5 mg L−1. With these results, it is possible to consider key moments during tambaqui farming to apply the medication to prevent disease outbreaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alves CMG, Nogueira JN, Barriga IB, dos Santos JR, Santos GG, Tavares-Dias M (2019) Albendazole, levamisole and ivermectin are effective against monogeneans of Colossoma macropomum (Pisces: Serrasalmidae). J Fish Dis 42:405–412. https://doi.org/10.1111/jfd.1295

    Article  CAS  PubMed  Google Scholar 

  • Bader C, Chelladurai JJ, Starling DE, Jones DE, Brewer MT (2017) Assessment of in vitro killing assays for detecting praziquantel-induced death in Posthodiplostomum minimum metacercariae. Exp Parasitol 181:70–74. https://doi.org/10.1016/j.exppara.2017.07.008

    Article  CAS  PubMed  Google Scholar 

  • Barton BA (1997) Stress in finfish: past, present and future—a historical perspective. In: Iwama GK, Pickering AD, Sumpter JP, Schreck CB (eds) Fish stress and health in aquaculture. Society for Experimental Biology, University of Cambridge, Cambridge, pp 1–34

  • Bjorklund H, Bylund G (1987) Absorption, distribution and excretion of the anthelmintic praziquantel (Droncit) in rainbow trout (Salmo gairdneri R.). Parasitol Res 73:240–244. https://doi.org/10.1007/BF00578511

    Article  CAS  PubMed  Google Scholar 

  • Boijink CL, Miranda WSC, Chagas EC, Dairiki JK, Inoue LAKA (2015) Anthelmintic activity of eugenol in tambaquis with monogenean gill infection. Aquaculture 438:138–140. https://doi.org/10.1016/j.aquaculture.2015.01.014

    Article  CAS  Google Scholar 

  • Booth H, Donald LE (1992) Farmacologia e Terapêutica em Veterinária, 6ª edição edn. Guanabara Koogan, RJ, Melbourne

  • Boyd CE, Tucker CS (1992) Water quality and pond soil analyses for aquaculture. Auburn University, Auburn

  • Burka JF, Hammell KL, Horsberg TE, Johnson GR, Rainnie DJ, Speare (1997) Drugs in salmonid aquaculture—a review. J Vet Pharmacol Therap 20:333–349

    Article  CAS  Google Scholar 

  • Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83:575–583

    Article  CAS  Google Scholar 

  • Campbell TW (2004) Hematology of fish. In: Thrall MA (ed) Veterinary hematology and clinical chemistry. Lippincott Willianms & Willkins, pp 277–289

  • Chagas EC, Maciel PO, Aquino-Pereira S (2015) Infecções por acantocéfalos: um problema para a produção de peixes. In: Tavares-Dias M, Mariano WS (eds) Aquicultura No Brasil: Novas perspectivas, vol 1, pp 305–328

  • Chagas EC, Araujo LD, Martins ML, Gomes LC, Malta JCO, Varella AB, Jerônimo GT (2016) Mebendazole dietary supplementation controls Monogenoidea (Platyhelminthes: Dactylogyridae) and does not alter the physiology of the freshwater fish Colossoma macropomum (Cuvier, 1818). Aquaculture 464:185–189. https://doi.org/10.1016/j.aquaculture.2016.06.022

    Article  CAS  Google Scholar 

  • Cohen SC, Justo MCN, Kohn A (2013) South American Monogenoidea parasites of fishes, amphibians and reptiles. Oficina de Livros, Rio de Janeiro

  • Dayan AD (2003) Albendazole, mebendazole and praziquantel. Review of non-clinical toxicity and pharmacokinetics. Acta Trop 86:141–159. https://doi.org/10.1016/S0001-706X(03)00031-7

    Article  CAS  PubMed  Google Scholar 

  • Fajer-Ávila EJ, Velásquez-Medina SP, Betancourt-Lozano M (2007) Effectiveness of treatments against eggs, and adults of Haliotrema sp. and Euryhaliotrema sp. (Monogenea: Ancyrocephalinae) infecting red snapper, Lutjanus guttatus. Aquaculture 264:66–72. https://doi.org/10.1016/j.aquaculture.2006.12.035

    Article  CAS  Google Scholar 

  • FAO—Food and Agriculture Organization of the United Nations (2020). The state of world fisheries and aquaculture 2020. Sustainability in action. Rome

  • Farias C, Brandão FR, Sebastião FA, Souza DCM, Monteiro PC, Majolo C, Chagas EC (2021) Albendazole and praziquantel for the control of Neoechinorhynchus buttnerae in tambaqui (Colossoma macropomum). Aquac Int. https://doi.org/10.1007/s10499-021-00687-5

  • Florindo LH, Leite CAC, Kalinin AL, Reid SG, Milsom WK, Rantin FT (2006) The role of branchial and orobranchial O2 chemoreceptors in the control of aquatic surface respiration in the neotropical fish tambaqui (Colossoma macropomum): progressive responses to prolonged hypoxia. J Exp Biol 209:1709–1715. https://doi.org/10.1242/jeb.02199

    Article  PubMed  Google Scholar 

  • Forwood JM, Bubner EJ, Landos M, D’Antignana T, Deveney MR (2015) Praziquantel treatment for yellowtail kingfish (Seriola lalandi): dose and duration safety study. Fish Physiol Biochem 42:103–109. https://doi.org/10.1007/s10695-015-0121-2

    Article  CAS  PubMed  Google Scholar 

  • Fu G, Donga Y, Zhanga X, Hu K (2020) Metabolomic profiles and pathways of praziquantel in crucian carp. Environ Toxicol Pharmacol 80:103466. https://doi.org/10.1016/j.etap.2020.103466

    Article  CAS  PubMed  Google Scholar 

  • Gomes LC, Simões LN, Araújo-Lima CARM (2020) Tambaqui (Colossoma macropomum). In: Baldisserotto B, Gomes LC (eds) Espécies nativas para piscicultura no Brasil, 3rd edn. Editora da UFSM, Santa Maria, pp 17–56

  • Hashimoto GS, Neto FM, Ruiz ML, Acchile M, Chagas EC, Chaves FCM, Martins ML (2016) Essential oils of Lippia sidoides and Mentha piperita against monogenean parasites and their in fluence on the hematology of Nile tilapia. Aquaculture 450:182–186. https://doi.org/10.1016/j.aquaculture.2015.07.029

    Article  CAS  Google Scholar 

  • Heath AG (1995) Water pollution and fish physiology, 2nd edn. CRC Press, Boca Raton

  • Hirazawa N, Mitsuboshi T, Hirata T, Shirasu K (2004) Susceptibility of spotted halibut Verasper variegatus (Pleuronectidae) to infection by the monogenean Neobenedenia girellae (Capsalidae) and oral therapy trials using praziquantel. Aquaculture 238:83–95. https://doi.org/10.1016/j.aquaculture.2004.05.015

    Article  CAS  Google Scholar 

  • Hirazawa N, Akiyama K, Umeda N (2013) Differences in sensitivity to the anthelmintic praziquantel by the skin-parasitic monogeneans Benedenia seriolae and Neobenedenia girellae. Aquaculture 404-405:59–64. https://doi.org/10.1016/j.aquaculture.2013.04.021

    Article  CAS  Google Scholar 

  • Kim KH, Cho JB (2000) Treatment of Microcotyle sebastis (Monogenea: Polyopisthocotylea) infestation with praziquantel in an experimental cage simulating commercial rockfish Sebastes schlegeli culture conditions. Dis Aquat Org 40:229–231

    Article  CAS  Google Scholar 

  • Kim KH, Choi ES (1998) Treatment of Microcotyle sebastis Monogenea on the gills of cultured rockfish Sebastes schelegeli with oral administration of mebendazole and bithionol. Aquaculture 167:115–121

    Article  CAS  Google Scholar 

  • Kogiannou D, Rigos G (2021) Praziquantel depletion from muscle plus skin tissue of gilthead sea bream (Sparus aurata). Mediterr Mar Sci 22(1):121–124

    Google Scholar 

  • Kogiannou D, Nikoloudaki C, Rigos G (2021) Absorption and depletion of dietary administered praziquantel in greater amberjack, Seriola dumerili. Aquaculture 535:736354. https://doi.org/10.1016/j.aquaculture.2021.736354

    Article  CAS  Google Scholar 

  • Malheiros DF, Maciel PO, Videira MN, Tavares-Dias M (2016) Toxicity of the essential oil of Mentha piperita in Arapaima gigas (pirarucu) and antiparasitic effects on Dawestrema spp. (Monogenea). Aquaculture 455:81–86. https://doi.org/10.1016/j.aquaculture.2016.01.018

    Article  CAS  Google Scholar 

  • Mitchell A, Darwish A (2009) Efficacy of 6-, 12-, and 24-h praziquantel bath treatments against Asian tapeworms Bothriocephalus acheilognathi in grass carp. N Am J Aquac 71(1):30–34. https://doi.org/10.1577/A07-091.1

    Article  Google Scholar 

  • Mitchell AJ, Hobbs MS (2007) The acute toxicity of praziquantel to grass carp and golden shiners. N Am J Aquac 69:203–206. https://doi.org/10.1577/A06-056.1

    Article  Google Scholar 

  • Morales-Serna FN, Chapa-López M, Martínez-Brown JM, Ibarra-Castro L, Medina-Guerrero RM, Fajer-Ávila EJ (2018) Efficacy of praziquantel and a combination anthelmintic (Adecto®) in bath treatments against Tagia ecuadori and Neobenedenia melleni (Monogenea), parasites of bullseye puffer fish. Aquaculture 492:361–368. https://doi.org/10.1016/j.aquaculture.2018.04.043

    Article  CAS  Google Scholar 

  • Natt MP, Herrick CA (1951) A new blood diluent for counting the erythrocytes and leucocytes of the chicken. Poult Sci 31:735–738

    Article  Google Scholar 

  • Nwani CD, Nnaji MC, Oluah SN, Echi PC, Nwamba HO, Ikwuagwu OE, Ajima MNO (2014) Mutagenic and physiological responses in the juveniles of African catfish, Clarias gariepinus (Burchell 1822) following short term exposure to praziquantel. Tissue Cell 46(4):264–273. https://doi.org/10.1016/j.tice.2014.05.011

    Article  CAS  PubMed  Google Scholar 

  • Oliveira LCD, Majolo C, Brandão FR, Farias CFS, Oliveira MIB, Santos WB, Monteiro PC, Rocha MJS, Chagas EC, Tavares-Dias M (2019) Avermectins, praziquantel and levamisole have in vitro efficacy against Neoechinorhynchus buttnerae (Neoechinorhynchidae) in Colossoma macropomum: a Serrasalmidae from the Amazon. J Fish Dis 42:1–8. https://doi.org/10.1111/jfd.12980

    Article  Google Scholar 

  • Onaka EM, Martins ML, Moraes FR (2003) Albendazole and praziquantel efficacy against Anacanthorus penilabiatus (Monogenea: Dactylogyridae), gill parasite of Piaractus mesopotamicus (Osteichthyes: Characidae). I. Therapeutic baths. Bol Inst Pesca 29(2):101–107

    Google Scholar 

  • Peixe BR (2020) Anuário 2020 Peixe BR da Piscicultura

  • Peixe BR (2021) Anuário 2021 Peixe BR da Piscicultura

  • R Core Team (2016) A language and environment for statistical computing. R Foundation for Statistical Computing

  • Ranzani-Paiva MJT, de Pádua SB, Tavares-Dias M, Egami MI (2013) Métodos para análise hematológica em peixes. Vol. Editora da Universidade Estadual de Maringá-EDUEM

  • Saint-Paul U (1988) Diurnal routine O2 consumption at different O2 concentration by Colossoma macropomum and Colossoma brachypomum (Teleostei, Serrasalmidae). Comp Biochem Physiol 89A:675–682

    Article  Google Scholar 

  • Schalch SHC, Moraes FR, Soares VE (2009) Praziquantel, levamisole and diflubenzuron in the control of Dolops carvalhoi (Crustacea: Branchiura) and Anacanthorus penilabiatus (Monogenea: Dactylogyridae) in Piaractus mesopotamicus Holmberg, 1887 (Osteichthyes: Characidae). Rev Bras Parasitol Vet 18(1):53–59

    Article  Google Scholar 

  • Schmahl G, Taraschewski H (1987) Treatment of fish parasites: 2. Effects of praziquantel niclosamide, levamisole, hydrochloride and metrifonate on monogenea Gyrodactylus aculeati. Diplozoon paradoxum. Parasitol Res 73(4):341–351

    Article  CAS  Google Scholar 

  • Sharp NJ, Diggles BK, Poortenaar CW, Willis TJ (2004) Efficacy of Aqui-S, formalin and praziquantel against the monogeneans, Benedenia seriolae and Zeuxapta seriolae, infecting yellowtail kingfish Seriola lalandi lalandi in New Zealand. Aquaculture 236:67–83. https://doi.org/10.1016/j.aquaculture.2004.02.005

    Article  CAS  Google Scholar 

  • Shirakashi S, Andrews M, Kishimoto Y, Ishimary K, Okada T, Swasa Y, Ogawa K (2012) Oral treatment of praziquantel as an effective control measure against blood fluke infection in Pacific bluefin tuna (Thunnus orientalis). Aquaculture 326–329:15–19. https://doi.org/10.1016/j.aquaculture.2011.10.035

    Article  CAS  Google Scholar 

  • Silva AS, Pedron FA, Zanette RA, Monteiro SG, Neto JR (2009) Eficácia do praziquantel no controle ao parasito Clinostomum complanatum Rudolphi, 1918 (Digenea, Clinostomidae) em peixes da espécie Rhamdia quelen Quoy & Gaimard, 1824 (jundiá). Pesq Agrop Gaúcha 15(1):73–76

    Google Scholar 

  • Stephens FJ, Cleary JJ, Jenkins G, Jones JB, Raidal SR, Thomas JB (2003) Treatments to control Haliotrema abaddon in the West Australian dhufish, Glaucosoma hebraicum. Aquaculture 215:1–10

    Article  CAS  Google Scholar 

  • Sudová E, Piacková V, Kroupová H, Pijacek M, Svobodová Z (2008) The effect of praziquantel applied per os on selected haematological and biochemical indices in common carp (Cyprinus carpio L.). Fish Physiol Biochem 35:599–605. https://doi.org/10.1007/s10695-008-9269-3

    Article  CAS  PubMed  Google Scholar 

  • Taraschewski H, Mehlhorn H, Raether W (1990) Loperamid, an efficacious drug against fish-pathogenic acanthocephalans. Parasitol Res 76:619–623. https://doi.org/10.1007/BF00932573

    Article  CAS  PubMed  Google Scholar 

  • Tavares-Dias M, Martins ML (2017) An overall estimation of losses caused by diseases in the Brazilian fish farms. J Parasit Dis 41:913–918. https://doi.org/10.1007/s12639-017-0938-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Tavares-Dias M, Moraes FR (2007) Haematological and biochemical reference intervals for farmed channel catfish. J Fish Biol 71:383–388

    Article  CAS  Google Scholar 

  • Tavares-Dias M, Sandrim EFS, Moraes FR, Carneiro PCF (2001) Physiological responses of “tambaqui” Colssoma macropomum (Characidae) to acute stress. Bol Inst Pesca 27(1):43–48

    Google Scholar 

  • Thatcher VE (2006) Amazon Fish Parasites, 2nd edn. Pensoft, Sofia-Moscow

  • Verdouw H, Van Echted CJA, Dekkers EMJ (1978) Ammonia determination based on indophenol formation with sodium silicylate. Water Res 12(6):397–402

    Article  Google Scholar 

  • Watson M (2009) Therapeutic review therapeutic review. Praziquantel. Journal of Exotic Pet Medicine 18(3):229–223. https://doi.org/10.1053/j.jepm.2009.06.005

    Article  Google Scholar 

  • Wedemeyer GA (1996) Physiology of fish in intensive culture systems. Chapman & Hall, New York

  • Yamamoto S, Shirakashi S, Morimoto S, Ishimaru K, Murata O (2011) Efficacy of oral praziquantel treatment against the skin fluke infection of cultured chub mackerel, Scomber japonicas. Aquaculture 319:53–57. https://doi.org/10.1016/j.aquaculture.2011.06.045

    Article  CAS  Google Scholar 

  • Zuskova E, Piackova V, Machova J, Chupani L, Steinbach C, Stara A, Velisek J (2018) Efficacy and toxicity of praziquantel in helminth-infected barbel (Barbus barbus L.). J Fish Dis 41(4):643–649. https://doi.org/10.1111/jfd.12764

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank their colleagues in the Department of Aquaculture, INPA, for assistance in fish collection and laboratorial analyses.

Availability of data and material

The data that support the findings of this study are available upon request from the corresponding author (P. O. Maciel).

Code availability

Not applicable.

Funding

The study was financially supported by the National Council for Scientific and Technological Development—CNPq (award number 573976-2008-2) and Fundação de Amparo à Pesquisa do Estado do Amazonas—FAPEAM (award number 3159/2008).

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Patricia Oliveira Maciel.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Brian Austin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maciel, P.O., Affonso, E.G. Praziquantel against monogeneans of tambaqui (Colossoma macropomum). Aquacult Int 29, 2369–2386 (2021). https://doi.org/10.1007/s10499-021-00753-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-021-00753-y

Keywords

Navigation