Skip to main content
Log in

Enhancing the production of astaxanthin by mixotrophic cultivation of Haematococcus pluvialis in open raceway ponds

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Mixotrophic cultivation of Haematococcus is efficient to increase astaxanthin productivity. However, application of this technique in open bioreactors is restricted because of bacterial contamination. In this study, mixotrophic cultivation of Haematococcus was carried out successfully in an outdoor raceway pond. The Haematococcus cells grew on light first, and then acetate/acetic acid was supplemented when nitrate was depleted from the culture media. Under such conditions, Haematococcus cells grew on intracellular nitrogen pool, while bacterial reproduction was limited. The average astaxanthin productivity reached 140 mg m−2day−1, which is about 1.2 times that of the simple phototrophic cultivation. This study explores a potential way to enhance astaxanthin productivity, and the results are helpful to the development of the Haematococcus industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

OD540 :

Optical density at wavelength of 540 nm

Chl a :

Chlorophyll a

Chl b :

Chlorophyll b

T-Car:

Total carotenoids

Asta:

Astaxanthin

HL:

High light

LL:

Low light

CFU:

Bacterial colony-forming unit

References

  • Bing W, Aliza Z, Achim T et al (2003) Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process under high irradiance. J Phycol 39:1116–1124

    Article  Google Scholar 

  • Bínová J, Tichý V, Lívanský K et al (1998) Bacterial contamination of microalgal biomass during outdoor production and downstream processing. Algol Stud 89:151–158

    Google Scholar 

  • Borowitzka MA, Huisman JM, Osborn A (1991) Culture of the astaxanthin-producing green alga Haematococcus pluvialis 1. Effects of nutrients on growth and cell type. J Appl Phycol 3:295–304

    Article  CAS  Google Scholar 

  • Choi YE, Yun YS, Park JM (2002) Evaluation of factors promoting astaxanthin production by a unicellular green alga, Haematococcus pluvialis, with fractional factorial design. Biotechnol Prog 18:1170–1175

    Article  CAS  Google Scholar 

  • Cysewski GR, Lorenz RT (2004) Industrial production of microalgal cell-mass and secondary products - species of high potential: Haematococcus. In: Richmond A (ed) Handbook of Microalgal Culture: biotechnology and Applied Phycology. Blackwell, USA

    Google Scholar 

  • Deschênes J-S, Boudreau A, Tremblay R (2015) Mixotrophic production of microalgae in pilot-scale photobioreactors: practicability and process considerations. Algal Res 10:80–86

    Article  Google Scholar 

  • Domı́nguez-Bocanegra AR, Guerrero Legarreta I, Martinez Jeronimo F et al (2004) Influence of environmental and nutritional factors in the production of astaxanthin from Haematococcus pluvialis. Bioresour Technol 92:209–214

    Article  Google Scholar 

  • Friedman M, Henika PR, Mandrell RE (2002) Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J Food Prot 65:1545–1560

    Article  CAS  Google Scholar 

  • Goksan T, Ak I, Gokpinar S (2010) An alternative approach to the traditional mixotrophic cultures of Haematococcus pluvialis Flotow (Chlorophyceae). J Microbiol Biotechnol 20:1276

    Article  CAS  Google Scholar 

  • Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216

    Article  CAS  Google Scholar 

  • Harker M, Tsavalos AJ, Young AJ (1996) Factors responsible for astaxanthin formation in the chlorophyte Haematococcus pluvialis. Bioresour Technol 55:207–214

    Article  CAS  Google Scholar 

  • Hu J, Nagarajan D, Zhang Q, Chang JS, Lee DJ (2018) Heterotrophic cultivation of microalgae for pigment production: a review. Biotechnol Adv 36:54–67

    Article  CAS  Google Scholar 

  • Industry experts report (2015) Global Astaxanthin Market – Sources, Technologies and Applications. http://industry-experts.com/verticals/healthcare-and-pharma/global-astaxanthin-market-sources-technologies-and-applications. Accessed 21 Aug 2018.

  • Jeon YC, Cho CW, Yun YS (2006) Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis. Enzym Microb Technol 39:490–495

    Article  CAS  Google Scholar 

  • Kamalanathan M, Chaisutyakorn P, Gleadow R et al (2018) A comparison of photoautotrophic, heterotrophic, and mixotrophic growth for biomass production by the green alga Scenedesmus sp. (Chlorophyceae). Phycologia 57:309–317

    Article  CAS  Google Scholar 

  • Kobayashi M, Kakizono T, Yamaguchi K et al (1992) Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions. J Ferment Bioeng 74:17–20

    Article  CAS  Google Scholar 

  • Kobayashi M, Kurimura Y, Kakizono T et al (1997a) Morphological changes in the life cycle of the green alga Haematococcus pluvialis. J Ferment Bioeng 84:94–97

    Article  CAS  Google Scholar 

  • Kobayashi M, Kurimura Y, Tsuji Y (1997b) Light-independent, astaxanthin production by the green microalga Haematococcus pluvialis under salt stress. Biotechnol Lett 19:507–509

    Article  CAS  Google Scholar 

  • Lam TP, Lee T-M, Chen C-Y, Chang JS (2018) Strategies to control biological contaminants during microalgal cultivation in open ponds. Bioresour Technol 252:180–187

    Article  CAS  Google Scholar 

  • Lavín PL, Lourenço SO (2005) An evaluation of the accumulation of intracellular inorganic nitrogen pools by marine microalgae in batch cultures. Braz J Oceanogr 53:55–67

    Article  Google Scholar 

  • Lee YK (2004) Algal nutrition: heterotrophic carbon nutrition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell, USA

    Google Scholar 

  • Li XF, Xu H, Wu QY (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98:764–771

    Article  CAS  Google Scholar 

  • Li YG, Miao FP, Geng YH et al (2012) Accurate quantification of astaxanthin from Haematococcus crude extract spectrophotometrically. Chin J Oceanol Limnol 30:627–637

    Article  Google Scholar 

  • Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    Article  CAS  Google Scholar 

  • Lim KC, Yusoff FM, Shariff M et al (2017) Astaxanthin as feed supplement in aquatic animals. Rev Aquac 0:1–36

    Google Scholar 

  • Lorenz R, Cysewski G (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167

    Article  CAS  Google Scholar 

  • Miao FP, Lu DY, Li YG et al (2006) Characterization of astaxanthin esters in Haematococcus pluvialis by liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. Anal Biochem 352:176–181

    Article  CAS  Google Scholar 

  • Middelburg J, Nieuwenhuize J (2000) Nitrogen uptake by heterotrophic bacteria and phytoplankton in the nitrate-rich Thames estuary. Mar Ecol Progress 203:13–21

    Article  CAS  Google Scholar 

  • Orosa M, Franqueira D, Cid A et al (2001) Carotenoid accumulation in Haematococcus pluvialis in mixotrophic growth. Biotechnol Lett 23:373–378

    Article  CAS  Google Scholar 

  • Orosa M, Franqueira D, Cid A, Abalde J (2005) Analysis and enhancement of astaxanthin accumulation in Haematococcus pluvialis. Bioresour Technol 96:373–378

    Article  CAS  Google Scholar 

  • Perez-Garcia O, Escalante FME, de Bashan LE et al (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36

    Article  CAS  Google Scholar 

  • Poddar N, Sen R, Martin GJO (2018) Glycerol and nitrate utilisation by marine microalgae Nannochloropsis salina and Chlorella sp. and associated bacteria during mixotrophic and heterotrophic growth. Algal Res 33:298–309

    Article  Google Scholar 

  • Solovchenko A, Khozin-Goldberg I, Recht L, Boussiba S (2011) Stress-induced changes in optical properties, pigment and fatty acid content of Nannochloropsis sp.: implications for non-destructive assay of total fatty acids. Mar Biotechnol 13:527–535

    Article  CAS  Google Scholar 

  • Wang ZJ, Wen XB, Xu Y et al (2018) Maximizing CO2 biofixation and lipid productivity of oleaginous microalga Graesiella sp. WBG­1 via CO2-regulated pH in indoor and outdoor open reactors. Sci Total Environ 619-620:827–833

    Article  CAS  Google Scholar 

  • Wen XB, Du K, Wang ZJ et al (2016) Effective cultivation of microalgae for biofuel production: a pilot-scale evaluation of a novel oleaginous microalga Graesiella sp. WBG-1. Biotechnol Biofuels 9:123

    Article  Google Scholar 

  • Xu H, Miao XL, Wu QY (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Science and Technology Service Network Initiative of the Chinese Academy of Sciences (KFJ-SW-STS-163). We thank Dr. Deborah Ballantine for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeguang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, X., Wang, Z., Ding, Y. et al. Enhancing the production of astaxanthin by mixotrophic cultivation of Haematococcus pluvialis in open raceway ponds. Aquacult Int 28, 625–638 (2020). https://doi.org/10.1007/s10499-019-00483-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-019-00483-2

Keywords

Navigation