Skip to main content

Advertisement

Log in

Comprehensive assessment of the genetic diversity and population structure of cultured populations of golden pompano, Trachinotus ovatus (Linnaeus, 1758), by microsatellites

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Golden pompano, Trachinotus ovatus, belongs to the family Carangidae. Within one decade, this species has rapidly become one of the most important cultured marine fish species in South China. However, the lack of a comprehensive genetic diversity assessment hinders the conservation of natural resources and management of cultured populations. Thus, we sampled one wild population and six cultured populations of golden pompano, which represented the whole cultured population, to assess the genetic diversity and population structure. The level of genetic diversity was low compared with those of other cultured fish, as the values of allelic richness, number of effective alleles and expected heterozygosity in the combined whole sample were 3.709, 2.592, and 0.591, respectively. These populations were little differentiated (Fst = 0.02091, p value = 0.00), and the whole sample did not show an explicit population structure at the individual level. The effective population size in each cultured population was small and in the whole sample was acceptable for a closed selection system. The pedigree reconstruction showed no evidence of artificial disturbance in mating. This general survey of cultured golden pompano populations showed the common characteristics of domestication with wild inputs. However, the low level of and potential decrease in genetic diversity should receive close attention in future breeding programs. In addition, we recommend wide surveys of natural resources and the establishment of closed breeding systems to increase genetic gain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allendorf FW (1986) Genetic drift and the loss of alleles versus heterozygosity. Zoo Biology 5:181–190

    Article  Google Scholar 

  • Bentsen HB, Olesen I (2002) Designing aquaculture mass selection programs to avoid high inbreeding rates. Aquaculture 204:349–359

    Article  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CA, Ablan MC, McManus JW, Bell JD, Tuan VS, Cabanban AS, Shao KT (2004) Population structure and genetic variability of six bar wrasse (Thallasoma hardwicki) in northern South China Sea revealed by mitochondrial control region sequences. Mar Biol(NY) 6:312–326

    CAS  Google Scholar 

  • Chen W, Xu D, Wang D, Deng Y, Yu Z, Qiu G, Li Y (2007) Study on the spawning and hatching technique for Trachinotus ovatus. Journal of Oceanography in Taiwan Strait 26(3):435–442

    Google Scholar 

  • Cheung WWL, Pitcher TJ (2008) Evaluating the status of exploited taxa in the northern South China Sea using intrinsic vulnerability and spatially explicit catch-per-unit-effort data. Fish Res 92(1):28–40

    Article  Google Scholar 

  • Chistiakov DA, Hellemans B, Volckaert FAM (2006) Microsatellites and their genomic distribution, evolution, function and applications: a review with special reference to fish genetics. Aquaculture 255:1–29

    Article  CAS  Google Scholar 

  • Dong LF, Tong T, Zhang Q, Wang QC, Xu MZ, Yu HR, Wang J (2017) Effects of dietary carbohydrate to lipid ratio on growth, feed utilization, body composition and digestive enzyme activities of golden pompano (Trachinotus ovatus). Aquac Nutr 24:341–347. https://doi.org/10.1111/anu.12565

    Article  CAS  Google Scholar 

  • Dudgeon CL, Gust N, Blair D (2000) No apparent genetic basis to demographic differences in scarid fishes across continental shelf of the Great Barrier Reef. Mar Biol 137:1059–1066

    Article  Google Scholar 

  • Earl DA, Vonholdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Eitaro S, Takagi M (2012) Genetic evaluation of domesticated broodstocks for hatchery Japanese flounder Paralichthys olivaceus using microsatellite markers. Fish Genetics and Breeding Science 41:69–73

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2007) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47

    Google Scholar 

  • Froese R, Pauly D. (2017) FishBase. http://www.fishbase.org. Cited 10 Jun 2017

  • GBIF Secretariat (2017) GBIF Backbone Taxonomy Checklist Dataset. doi:https://doi.org/10.5072/hufs9m. Cited 17 Nov 2017

  • Gjedrem, T. & Baranski, M. (2010) Selective breeding in aquaculture: an introduction. Springer Netherlands

  • Gjedrem T, Robinson N (2014) Advances by selective breeding for aquatic species: a review. Agric Sci 05:1152–1158

    Google Scholar 

  • Glover KA, Skaala Ø, Søvik AGE, Helle TA (2011) Genetic differentiation among Atlantic salmon reared in sea-cages reveals a non-random distribution of genetic material from a breeding programme to commercial production. Aquac Res 42:1323–1331

    Article  Google Scholar 

  • Goudet J (1995) Fstat (version 1.2): a computer program to calculate F-statistics. J Hered 86(6):485–486

    Article  Google Scholar 

  • Goudet, J. (1999) PCA-GEN. https://www2.unil.ch/popgen/softwares/pcagen.htm. Cited 20 Oct 2017

  • Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Salin F (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11:591–611

    Article  CAS  PubMed  Google Scholar 

  • Herbinger CM, O’Reilly PT, Verspoor E (2006) Unravelling first-generation pedigrees in wild endangered salmon populations using molecular genetic markers. Mol Ecol 15:2261–2275

    Article  CAS  PubMed  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403

    Article  CAS  PubMed  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Lacy RC (1987) Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv Biol 1:143–158

    Article  Google Scholar 

  • Lei J, Youjun O (2011) Genetic polymorphism of three cultured populations of golden pompano Trachinotus ovatus as revealed by microsatellites. J Trop Oceanogr 30:62–68

    Google Scholar 

  • Lemay MA, Boulding EG (2009) Microsatellite pedigree analysis reveals high variance in reproductive success and reduced genetic diversity in hatchery-spawned northern abalone. Aquaculture 295:22–29

    Article  CAS  Google Scholar 

  • Li YC, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21:991–1007

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Chen X, Chen S, Zhuojia L, Huang Z, Niu J, Wu K, Lu X (2012) Replacement of fish meal with fermented soybean meal in practical diets for pompano Trachinotus ovatus. Aquac Res 44:151–156

    Article  CAS  Google Scholar 

  • Lior D, Rosenberg NA, Uri L, Feldman MW, Jossi H (2007) Genetic diversity and population structure inferred from the partially duplicated genome of domesticated carp, Cyprinus carpio L. Genet Sel Evol 39:319–340

    Article  Google Scholar 

  • Liu P, Xia JH, Lin G, Sun F, Liu F, Lim HS, Pang HY, Yue GH (2012) Molecular parentage analysis is essential in breeding Asian seabass. PLoS One 7:e51142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loughnan SR, Domingos JA, Smithkeune C, Forrester JP, Jerry DR, Beheregaray LB, Robinson NA (2013) Broodstock contribution after mass spawning and size grading in barramundi (Lates calcarifer, Bloch). Aquaculture 404:139–149

    Article  Google Scholar 

  • Loughnan SR, Smith Keune C, Jerry DR, Beheregaray LB, Robinson NA (2016) Genetic diversity and relatedness estimates for captive barramundi (Lates calcarifer, Bloch) broodstock informs efforts to form a base population for selective breeding. Aquac Res 47:3570–3584

    Article  Google Scholar 

  • Luikart G, Allendorf F, Cornuet J, Sherwin W (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247

    Article  CAS  PubMed  Google Scholar 

  • Mitton JB, Lewis WM (1989) Relationships between genetic variability and life-history features of bony fishes. Evolution 43:1712–1723

    Article  PubMed  Google Scholar 

  • Oosterhout CV, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Resour 4(3):535–538

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piry S, Luikart G, Cornuet J (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Pitcher TJ, Cheung WWL (2013) Fisheries: hope or despair? Mar Pollut Bull 74:506–516

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pujolar JM, Maes GE, Vancoillie C, Volckaert FAM (2005) Growth rate correlates to individual heterozygosity in the European eel, Anguilla anguilla L. Evolution 59:189–199

    CAS  PubMed  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete re-implementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Sawayama E, Takagi M (2016) Genetic diversity and structure of domesticated strains of red sea bream, Pagrus major, inferred from microsatellite DNA markers. Aquac Res 47:379–389

    Article  CAS  Google Scholar 

  • Skaala O, Yheim H, Høyheim B, Glover K, Dahle G (2004) Microsatellite analysis in domesticated and wild Atlantic salmon (Salmo salar L): allelic diversity and identification of individuals. Aquaculture 240:131–143

    Article  CAS  Google Scholar 

  • Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82:561–573

    Article  PubMed  Google Scholar 

  • Su Y, Xu H, Ma H, Feng J, Wen W, Guo Z (2015) Dynamic distribution and tissue tropism of nervous necrosis virus in juvenile pompano (Trachinotus ovatus) during early stages of infection. Aquaculture 440:25–31

    Article  Google Scholar 

  • Teletchea F, Fontaine P (2014) Levels of domestication in fish: implications for the sustainable future of aquaculture. Fish Fish 15:181–195

    Article  Google Scholar 

  • Templeton, A.R. (2006) Population genetics and microevolutionary theory. Wiley-Liss

  • Tseng MC, Smith PJ (2012) Lack of genetic differentiation observed in Pacific bluefin tuna (Thunnus orientalis) from Taiwanese and New Zealand waters using mitochondrial and nuclear DNA markers. Mar Freshw Res 63:198–209

    Article  CAS  Google Scholar 

  • Tutman P, Glavi NA, Ko Ul V, Skaramuca BK, Glamuzina B (2004) Preliminary information on feeding and growth of pompano, Trachinotus ovatus (Linnaeus, 1758) (Pisces; Carangidae) in captivity. Aquac Int 12:387–393

    Article  Google Scholar 

  • Uthairat NN, Thakkina M (2009) Genetic diversity of domesticated stocks of striped catfish, Pangasianodon hypophthalmus (Sauvage 1878), in Thailand: relevance to broodstock management regimes. Aquaculture 297:70–77

    Article  Google Scholar 

  • Wang Y, Yuan W (2008) Changes of demersal trawl fishery resources in northern South China Sea as revealed by demersal trawling. South China Fisheries Science 4:26–33

    Google Scholar 

  • Wang H, Iwai TJ, Zhao BP, Lee CS, Yang JZ (2010) Identification of microsatellite DNA markers for Pacific threadfin parentage assignment. J World Aquacult Soc 41:640–647

    Article  Google Scholar 

  • Wang L, Meng Z, Liu X, Zhang Y, Lin H (2011) Genetic diversity and differentiation of the orange-spotted grouper (Epinephelus coioides) between and within cultured stocks and wild populations inferred from microsatellite DNA analysis. Int J Mol Sci 12:4378–4394

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Shi X, Su Y, Meng Z, Lin H (2012) Loss of genetic diversity in the cultured stocks of the large yellow croaker, Larimichthys crocea, revealed by microsatellites. Int J Mol Sci 13:5584–5597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waples RS, DO C (2008) LDNe: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756

    Article  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the anaysis of population evolution. Int J Org Evol 38:1358

    CAS  Google Scholar 

  • Youjun O, Lei J, Jiaer L, Chunyan F, Gang W (2013) Correlation analysis of major morphometric traits and body weight of selective group at different month ages of Trachinotus ovatus. J Fish China 37:961

    Article  Google Scholar 

  • Zeng, B., 1989. Investigation and zoning of fishery resources in South China Sea (in Chinese). Guangdong Science and Technology Press

Download references

Funding

This work was supported by grants from the Central Public-interest Scientific Institution Basal Research Fund, CAFS (2016HY-JC0304), the China Agriculture Research System (CARS-47), Special Scientific Research Funds for Central Non-profit Institute, Chinese Academy of Fishery Sciences (2017YB24), National Science and Technology Infrastructure platform (2018DKA30470), and China-ASEAN Maritime Cooperation Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dian-Chang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Zhang, N., Yang, JW. et al. Comprehensive assessment of the genetic diversity and population structure of cultured populations of golden pompano, Trachinotus ovatus (Linnaeus, 1758), by microsatellites. Aquacult Int 26, 1445–1457 (2018). https://doi.org/10.1007/s10499-018-0289-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-018-0289-4

Keywords

Navigation