Skip to main content

Advertisement

Log in

Compensatory growth and feed restriction in marine shrimp production, with emphasis on biofloc technology

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

In Brazil, studies and production of penaeid shrimp in a biofloc technology (BFT) system are recent, but the results point to a promising future. Research with feed restriction inducing compensatory growth in shrimps has been shown to be a technique that allows a saving of around 25% in the use of feed for shrimp production. It also allows the reduction of costs with salaries and adapts shrimp farming to the world demand for environmentally friendly production, with the reduction of nitrogen and phosphorus levels in its effluents, as well as lower water use in shrimp farming. In crustaceans, it has been shown that after a period of feed restriction, the animals show a pronounced compensatory growth when they return to a sufficient food source. Studies with the penaeid shrimp Litopenaeus vannamei reported the ability of the species to obtain a complete compensatory growth after short feeding periods (1 to 3 days) followed by feeding; These short periods of fasting presented a greater efficiency in the feed conversion besides the decrease in the concentration of phosphorus present in the aquatic environment, coming from the excreta. The adoption of a restriction program in the feeding using BFT may contribute to a reduction in operating costs, reduction of metabolic nutrients dissolved in water, and, consequently, an increase in the number of cycles in which the same water can be reused for production reducing production costs and improving productivity indices in shrimp farming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali M, Nicieza A, Wootton RJ (2003) Compensatory growth in fishes: a response to growth depression. Fish Fish 4:147–190

    Article  Google Scholar 

  • Ali TES, Martínez-Llorens S, Moñino AV et al (2016) Effects of weekly feeding frequency and previous ration restriction on the compensatory growth and body composition of Nile tilapia fingerlings. Egypt J Aquat Res 42:357–363

    Article  Google Scholar 

  • Américo JHP, Torres NH, Machado AA et al (2013) Piscicultura em tanques redes: impactos e consequências na qualidade da água. Rev ANAP Brasil 6(7):137–150

    Google Scholar 

  • Arauco LR, Costa VB (2012) Restrição alimentar no desempenho produtivo da tilápia (Oreochromis niloticus). Com Sci 3(2):134–138

    Google Scholar 

  • Asaduzzaman M, Wahab MA, Verdegem MCJ et al (2008) C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture 280:117–123

    Article  CAS  Google Scholar 

  • Auster PJ, Stewart LL (1984) Compensatory growth in the bay scallop, Argopecten irradians (L.) J Northw Atl Fish Sci 5:103–104

    Article  Google Scholar 

  • Avnimelech Y (2014) Biofloc technology: a practical guidebook, 3rd edn. World Aquaculture Society, Baton Rouge

    Google Scholar 

  • Bauer W, Prentice-Hernedez C, Tesser MT et al (2012) Substitution of fishmeal with microbial floc meal and soy protein concentrate in diets for the pacific white shrimp Litopenaeus vannamei. Aquaculture 342-343:112–116

    Article  CAS  Google Scholar 

  • Bavcevic L, Klanjscek T, Karamarko V et al (2010) Compensatory growth in gilthead sea bream (Sparus aurata) compensates weight, but not length. Aquaculture 301:57–63

    Article  Google Scholar 

  • Cavalli RO, Lehnen TG, Kamimura MT et al (2008) Desempenho de pós-larvas do camarão-rosa Farfantepenaeus paulensis alimentadas com diferentes frequências durante a fase de berçário. Acta Sci Biol Sci 30(3):231–236

    Article  Google Scholar 

  • Chamberlain G, Avnimelech Y, McIntosh RP et al (2001) Advantages of aerated microbial reuse systems with balanced C/N. II. Composition and nutritional value of organic detritus. Global Aquacult. Glob Aquacult Adv 4(4):22–24

    Google Scholar 

  • Comoglio LI, Gaxiola G, Roque A et al (2004) The effect of starvation on refeeding, digestive enzyme activity, oxygen consumption, and ammonia excretion in juvenile white shrimp Litopenaeus vannamei. J Shellfish Res 23(1):243–249

    Google Scholar 

  • Covi JA, Kim HW, Mykles DL (2008) Expression of alternatively spliced transcripts for a myostatin-like protein in the blackback land crab, Gecarcinus lateralis. Comp Biochem Physiol A Mol Integr Physiol 150:423–430

    Article  PubMed  Google Scholar 

  • Crab R, Avnimelech Y, Defoird T et al (2007) Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture 270:1–14

    Article  CAS  Google Scholar 

  • Crab R, Defoirdt T, Bossier P et al (2012) Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture 356-357:351–356

    Article  Google Scholar 

  • De Santis C, Wade NM, Jerry DR et al (2011) Growing backwards: an inverted role for the shrimp ortholog of vertebrate myostatin and GDF11. J Exp Biol 214:2671–2677

    Article  PubMed  Google Scholar 

  • De Schryver P, Defoirdt T, Sorgeloos P (2014) Early mortality syndrome outbreaks: a microbial management issue in shrimp farming? PLoS Pathog 10:10–11

    Article  Google Scholar 

  • Dobson SH, Holmes RM (1984) Compensatory growth in rainbow trout, Salmo gairdneri Richardson. J Fish Biol 25:649–656

    Article  Google Scholar 

  • Ekasari J, Angela D, Waluyo SH et al (2014) The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals. Aquaculture 426-427:105–111

    Article  CAS  Google Scholar 

  • Emerenciano M, Ballester ELC, Cavalli RO et al (2012) Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquac Res 43:447–457

    Article  CAS  Google Scholar 

  • FAO (2014) The state of world fisheries and aquaculture (SOFIA) 2014. FAO Fish, Aquac, Rome

    Google Scholar 

  • Farbridge KJ, Flett PA, Leatherland JF (1992) Temporal effect of restricted diet and compensatory increase dietary intake on thyroid function, plasma growth hormone levels and tissue lipid reserves of rainbow trout Oncorhynchus mykiss. Aquaculture 104:157–174

    Article  Google Scholar 

  • Ferreira GS, Bolívar NC, Pereira SA et al (2015) Microbial biofloc as source of probiotic bacteria for the culture of Litopenaeus vannamei. Aquaculture 448:273–279

    Article  CAS  Google Scholar 

  • Foés G, Krummenauer D, Lara G et al (2016) Long term and the compensatory growth of white shrimp Litopanaeus vannamei in aquaculture ponds. Lat Am J Aquat Res 44(3):588–594

    Google Scholar 

  • Gamboa-Delgado J, Oca GARM, Reyes JCR et al (2017) Assessment of the relative contribution of dietary nitrogen from fish meal and biofloc meal to the growth of Pacific white shrimp (Litopenaeus vannamei). Aquac Res 48:2963–2972

    Article  CAS  Google Scholar 

  • Gao L, Shan H, Zhang T et al (2012) Effects of carbohydrate addition on Litopenaeus vannamei intensive culture in a zero-water exchange system. Aquaculture 243:89–96

    Article  Google Scholar 

  • Hagen Ø, Fernandes JMO, Solberg C et al (2009) Expression of growth related genes in muscle during fasting and refeeding of juvenile Atlantic halibut. Comp Biochem Physiol B Biochem Mol Biol 152(1):47–53

    Article  PubMed  Google Scholar 

  • Hayward RS, Wang N, Noltie DB (2000) Group holding impedes compensatory growth of hybrid sunfish. Aquaculture 183:299–305

    Article  Google Scholar 

  • Hopkins JS, Hamilton RD, Sandifer PA et al (1993) Effect of water exchange rate on production, water quality, effluent characteristics and nitrogen budgets of intensive shrimp ponds. J World Aquacult Soc 24:304–320

    Article  Google Scholar 

  • Hornick JL, Eenaeme CV, Gérard O et al (2000) Mechanisms of reduced and compensatory growth. Domest Anim Endocrinol 19:121–132

    Article  CAS  PubMed  Google Scholar 

  • Jiwyam W (2010) Growth and compensatory growth of juvenile Pangasius bocourti Sauvage, 1880 relative to ration. Aquaculture 306:393–397

    Article  Google Scholar 

  • Kim HW, Mykles DL, Goetz FW et al (2004) Characterization of a myostatin like gene from the bay scallop, Argopecten irradians. Biochim Biophys Acta 1679:174–179

    Article  CAS  PubMed  Google Scholar 

  • Kim BK, Kim KS, CW O et al (2009) Twelve actin-encoding cDNAs from the American lobster, Homarus americanus: cloning and tissue expression of eight skeletal muscle, one heart, and three cytoplasmic isoforms. Comp Biochem Physiol B Biochem Mol Biol 153:178–184

    Article  PubMed  Google Scholar 

  • Krummenauer D, Lara GD, al FG e (2013) Sistema de bioflocos: É possível reutilizar a água por diversos ciclos? Panor Aquic 23:40–47

    Google Scholar 

  • Krummenauer D, Samocha T, Poersch LH et al (2014) The reuse of water on the culture of pacific white shrimp, Litopenaeus vannamei, in BFT system. J World Aquac Soc 45:3–14

    Article  CAS  Google Scholar 

  • Kuhn DD, Boardman GD, Lawrence AL et al (2009) Microbial floc meal as a replacement ingredient for fish meal and soybean protein in shrimp feed. Aquaculture 296:51–57

    Article  CAS  Google Scholar 

  • Kuhn DD, Lawrence AL, Boardman GD et al (2010) Evaluation of two types of bioflocs derived from biological treatment of fish efluente as feed ingredients for Pacific white shrimp, Litopenaeus vannamei. Aquaculture 303:28–33

    Article  CAS  Google Scholar 

  • Lara G (2016) Manejo alimentar de Litopenaeus vannamei cultivado em sistema de bioflocos: efeitos da restrição alimentar e diferentes taxas de arraçoamento sobre os parâmetros zootécnicos. PhD thesis, Postgraduate Program in Aquaculture, Federal University of Rio Grande - FURG, RS, Brazil

  • Lara G, Krummenauer D, Poersch LH et al (2012) Sistema de bioflocos. Processos de assimilação e remoção do nitrogênio. Panor Aquic 22:32–37

    Google Scholar 

  • Li S, Zhou Z, Dong Y et al (2016) Molecular characterization, expression analysis of the myostatin gene and its association with growth traits in sea cucumber (Apostichopus japonicus). Comp Biochem Physiol B Biochem Mol Biol 201:12–20

    Article  CAS  PubMed  Google Scholar 

  • Lin X-T, Pan J-X, Z-N X et al (2008) Effect of periodic starvation on feeding, growth and defecation of Litopenaeus vannamei. Acta Hydrobiol Sin 32:403–407

    Article  Google Scholar 

  • Lin Y-C, Chen J-C, Man SNC et al (2012) Modulation of innate immunity and gene expressions in white shrimp Litopenaeus vannamei following long-term starvation and re-feeding. Results Immunol 2(2012):148–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Maciel JC (2013) Estudo de viabilidade econômica e comercial de produção de camarões marinhos no estado de Minas Gerais em sistema de bioflocos (BFT) em água salgada artificialmente. Monografia. Faculdades Pitágoras, MG, Brasil

    Google Scholar 

  • Mcpherron AC, Lawler AM, Lee S (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83–90

    Article  CAS  PubMed  Google Scholar 

  • Nikki J, Pirhonen J, Jobling M (2004) Compensatory growth in juvenile rainbow trout, Oncorhynchus mykiss (Walbaum), held individually. Aquaculture 235:285–296

    Article  Google Scholar 

  • Peres H, Santos S, Oliva-Teles A (2011) Lack of compensatory growth response in gilthead seabream (Sparus aurata) juveniles following starvation and subsequent refeeding. Aquaculture 318:384–388

    Article  CAS  Google Scholar 

  • Poersch L, Cavalli RO, Wasielesky WJ, Castello JP, Peixoto SRM (2006) Perspectivas para o desenvolvimento dos cultivos marinhos no estuário da Lagoa dos Patos, RS. Cienc Rural 36(4):1337–1343

  • Qian Z, Mi X, Wang X et al (2013) cDNA cloning and expression analysis of myostatin/GDF11 in shrimp, Litopenaeus vannamei. Comp Biochem Physiol A Mol Integr Physiol 165:30–39

    Article  CAS  PubMed  Google Scholar 

  • Samocha TM, Cordova J, Blacher T et al (2000) High-density nursery of Litopenaeus vannamei in white-spot infected area utilizing raceway system with limited water discharge in Ecuador. Global Aquacult. Advocate 3:66–68

    Google Scholar 

  • Schryver PD, Crab R, Defoirdt T et al (2008) The basics of bioflocs technology: the added value for aquaculture. Aquaculture 277:125–137

    Article  Google Scholar 

  • Scopel BR, Schveitzer R, Seiffert WQ et al (2011) Substituição da farinha de peixe em dietas para camarões marinhos cultivados em sistema bioflocos. Pesq Agropec Bras 46:928–934

    Article  Google Scholar 

  • Sheridan MA, Mommsen TP (1991) Effects of nutritional state on in vivo lipid and carbohydrate metabolism of coho salmon, Oncorhynchus kisutch. Gen Comp Endocrinol 81:473–483

    Article  CAS  PubMed  Google Scholar 

  • Souza VL, Urbinati EC, Martins MIEG et al (2003) Avaliação do crescimento e do custo da alimentação do pacu (Piaractus mesopotamicus Holmberg, 1887) submetidos a ciclos alternados de restrição alimentar e realimentação. Rev Bras Zootec 32:19–28

    Article  Google Scholar 

  • Stumpf L, Greco LSL (2015) Compensatory growth in juveniles of freshwater redclaw crayfish Cherax quadricarinatus reared at three different temperatures: hyperphagia and food efficiency as primary mechanisms. PLoS One 10(9):1–9

    Article  Google Scholar 

  • The World Bank (2013) Fish to 2030: prospects for fisheries and aquaculture. World Bank Report number 83177-GLB. The World Bank, Washington, DC, p 102

  • Thompson FL, Abreu PC, Wasielesky W (2002) Importance of biofilm for water quality and nourishment in intensive shrimp culture. Aquaculture 203:263–278

    Article  Google Scholar 

  • Wang Y, Cui Y, Yang Y et al (2000) Compensatory growth in hybrid tilapia, Oreochromis mossambicus x O. niloticus, reared in seawater. Aquaculture 189:101–108

    Article  Google Scholar 

  • Wang Y, Cui Y, Qin JG et al (2009) Cyclical feed deprivation and refeeding fails to enhance compensatory growth in Nile tilapia, Oreochromis niloticus L. Aquac Res 40:204–210

    Article  CAS  Google Scholar 

  • Wasielesky WJ, Atwood H, Stokes A et al (2006) Effect natural production in a zero exchange suspended microbial floc based super-intensive culture for white shrimp Litopenaeus vannamei. Aquaculture 258:396–403

    Article  Google Scholar 

  • Wasielesky WJ, Froes C, Fóes G et al (2013) Nursery of Litopenaeus vannamei reared in a biofloc system: the effect of stocking densities and compensatory growth. J Shellfish Res 32(3):799–806

    Article  Google Scholar 

  • Wu L, Dong S (2002a) The effects of repetitive starvation-and-refeeding cycles on the compensatory growth response in chinese shrimp, Fenneropenaeus chinensis (Osbeck, 1765) (Decapoda, Penaeidae). Crustaceana 74(11):1225–1239

    Article  Google Scholar 

  • Wu L, Dong S (2002b) Compensatory growth responses in juvenile chinese shrimp, Fenneropenaeus chinensis, at different temperatures. J Crust Biol 22(3):511–520

    Article  Google Scholar 

  • Wu L, Dong S, Wang F et al (2000) Compensatory growth response following periods of starvation in Chinese shrimp, Penaeus chinensis Osbeck. J Shell Res 19:717–722

    Google Scholar 

  • Wu L, Dong S, Tian X (2001a) The compensatory growth in the Chinese shrimp (Penaeus chinensis) following starvation. Acta Ecol Sin 21:452–457

    Google Scholar 

  • Wu L, Dong S, Tian X et al (2001b) The effect of previous feeding regimes on the compensatory growth response in Chinese shrimp, Fenneropenaeus chinensis. J Crust Biol 21:559–565

    Article  Google Scholar 

  • Xu W-J, Pan L-Q (2012) Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture 356-357:147–152

    Article  CAS  Google Scholar 

  • Zhu Z-M, Lin X-T, Pan J-X et al (2016) Effect of cyclical feeding on compensatory growth, nitrogen and phosphorus budgets in juvenile Litopenaeus vannamei. Aquac Res 47:283–289

    Article  CAS  Google Scholar 

  • Zhuo RQ, Zhou TT, Yang SP et al (2017) Characterization of a molt-related myostatin gene (FmMstn) from the banana shrimp Fenneropenaeus merguiensis. Gen Comp Endocrinol 248:55–68

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kleber Campos Miranda-Filho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maciel, J.C., Francisco, C.J. & Miranda-Filho, K.C. Compensatory growth and feed restriction in marine shrimp production, with emphasis on biofloc technology. Aquacult Int 26, 203–212 (2018). https://doi.org/10.1007/s10499-017-0209-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-017-0209-z

Keywords

Navigation