Skip to main content
Log in

Parasite risk of maricultured rainbow trout (Oncorhynchus mykiss Walbaum, 1792) in the Western Baltic Sea, Germany

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Harvest quality rainbow trout (Oncorhynchus mykiss Walbaum, 1792) raised in an integrated multi-trophic aquaculture (IMTA) unit off the German coast in the Baltic Sea were studied for ectoparasites and endoparasites. One hundred five specimens were sampled between November 2013 and 2014. Four endoparasite taxa were found, while no zoonotic or fish pathogenic ectoparasites could be detected. Molecular identified metacercariae of Diplostomum baeri were recorded at a non-critical level (18.1% prevalence, 1–4 intensity), getting introduced into the Baltic Sea through the cultured rainbow trout from the freshwater-based hatchery. The isolated acanthocephalan Echinorhynchus truttae was of freshwater origin, too. Pomphorhynchus laevis (Acanthocephala) and Brachyphallus crenatus (Digenea) seem to be transmitted into the net cage from Baltic Sea intermediate hosts. The parasite fauna was compared with those of wild living sea trout, Salmo trutta trutta studied at the immediate area (Unger and Palm in Parasitol Res 115(1):165–174, 2016). Stomach content analyses demonstrated that the farmed pellet-fed fish also utilized natural resources, especially fouling organisms. A single escapee, caught from the wild in the vicinity of the cages, had a massive intestinal infection with Baltic Sea parasites, the acanthocephalans Echinorhynchus gadi, P. laevis and the nematode Hysterothylacium aduncum. The salinity (helminths) as well as the culture conditions (trichodinids) at this pilot facility prevent significant transfer of fish pathogenic and zoonotic parasites as well as ectoparasite establishment and reduce the parasite risk for maricultured rainbow trout. This sampled location is particularly suitable for healthy and environmentally friendly aquaculture farming in the Baltic Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BL:

Body length

BW:

Body width

GW:

Gutted weight

IRI:

Index of relative importance

ITS:

Internal transcribed spacer

SL:

Standard length

s. l.:

Sensu lato

s. s.:

Sensu stricto

TL:

Total length

TW:

Total weight

References

  • Ahlgren MO (1998) Consumption and assimilation of salmon net pen fouling debris by the Red Sea cucumber Parastichopus californicus: implications for polyculture. J World Aquacult Soc 29(2):133–139

    Article  Google Scholar 

  • Awachie JBE (1972) Experimental studies on some host-parasite relationships of the Acanthocephala. Effects of primary heavy infection and superimposed infection of Salmo trutta L. by Echinorhynchus truttae Schrank, 1788. Acta Parasitol Polonica 20:375–382

    Google Scholar 

  • Bailey RE, Margolis L, Workman GD (1989) Survival of certain naturally acquired freshwater parasites of juvenile sockeye salmon, Oncorhynchus nerka (Walbaum), in hosts held in fresh and sea water, and implications for their use as population tags. Can J Zool 67:1757–1766

    Article  Google Scholar 

  • Blasco-Costa I, Faltýnková A, Georgieva S, Skírnisson K, Scholz T, Kostadinova A (2014) Fish pathogens near the Arctic Circle: molecular, morphological and ecological evidence for unexpected diversity of Diplostomum (Digenea: Diplostomidae) in Iceland. Int J Parasitol 44:703–715

    Article  PubMed  Google Scholar 

  • Bolton JJ, Anderson RJ (1990) Correlation between intertidal seaweed community composition and sea water temperature patterns on a geographic scale. Bot Mar 33:447–457

    Article  Google Scholar 

  • Buchmann K, Uldal A (1994) Effects of eyefluke infections on the growth of rainbow trout (Oncorhynchus mykiss) in a mariculture system. Bull Eur Assn Fish P 14:104–107

    Google Scholar 

  • Buchmann K (1997) Salinity tolerance of Gyrodactylus derjavini from rainbow trout Oncorhynchus mykiss. Bull Eur Assn Fish P 17:123–125

    Google Scholar 

  • Buchmann K (2014) Impact and control of protozoan parasites in maricultured fishes. Parasitology 142:168–177

    Article  Google Scholar 

  • Bush O, Lafferty AD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on his own terms. Margolis et al. revisited J Parasitol 83:575–583

    Article  CAS  Google Scholar 

  • Costello MJ (2009) The global economic cost of sea lice to the salmonid farming industry. J Fish Dis 32:115–118

    Article  PubMed  Google Scholar 

  • Dayton PK (1971) Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol Monogr 41:351–389

    Article  Google Scholar 

  • Dennis EA (1973) Development of the metacercaria and adhesive organ of Mesostephanus yedere, Dennis and Penner, 1971 (Trematoda: Cyathocotylidae) and their effects on the host tissue. J Helminthol 47:61–71

    Article  CAS  PubMed  Google Scholar 

  • Denny M, Dairiki J, Distefano S (1992) Biological consequences of topography on wave-swept rocky shores: I. Enhancement of external fertilization. Biol Bull 183:220–232

    Article  Google Scholar 

  • Dobberstein RC, Palm HW (2000) Trichodinid ciliates (Peritrichia: Trichodinidae) from the Bay of Kiel, with description of Trichodina claviformis sp. n. Folia parasit 47(2):81–90

    Article  CAS  Google Scholar 

  • Faltýnková A, Georgieva S, Kostadinova A, Blasco-Costa I, Scholz T, Skírnisson K (2014) Diplostomum von Nordmann, 1832 (Digenea: Diplostomidae) in the sub-Arctic: descriptions of the larval stages of six species discovered recently in Iceland. Syst Parasitol 89:195–213

    Article  PubMed  Google Scholar 

  • FAO (2016) Food and Agriculture Organization of the United Nations, Fishery Statistical Collections, Global Aquaculture Production, http://www.fao.org. Cited 15 June 2016

  • Fitridge I, Dempster T, Guenther J, de Nys R (2012) The impact and control of biofouling in marine aquaculture: a review. Biofouling 28:649–669

    Article  PubMed  Google Scholar 

  • Fleming IA, Hindar K, Mjølnerød IB, Jonsson B, Balstad T, Lamberg A (2000) Lifetime success and interactions of farm salmon invading a native population. Proc R Soc Lond B Biol Sci 267(1452):1517–1523

    Article  CAS  Google Scholar 

  • Galazzo DE, Dayanandan S, Marcogliese DJ, McLaughlin JD (2002) Molecular systematics of some North American species of Diplostomum (Digenea) based on rDNA-sequence data and comparisons with European congeners. Can J Zool 80(12):2207–2217

    Article  CAS  Google Scholar 

  • Georgieva S, Soldánová M, Pérez-del-Olmo A, Dangel RD, Sitko J, Sures B, Kostadinova A (2013) Molecular prospecting for European Diplostomum (Digenea: Diplostomidae) reveals cryptic diversity. Int J Parasitol 43:57–72

    Article  CAS  PubMed  Google Scholar 

  • Golvan YJ (1969) Systematique des acanthocephales (Acanthocephala, Rudolphi 1801). L’ordre des Palaeacanthocephala Meyer 1931. La superfamille des Echinorhynchoidea (Cobbold 1876) Golvan et Houin, 1963. Mémoires du Museum National d’Histoire Naturelle, Série A, Zoology 57, Paris (in French)

  • Grabda J (1974) The dynamic of the nematode larvae, Anisakis simplex (Rud.) invasion in the South-Sestern Baltic herring (Clupea harengus L.). Acta Ichthyol Pisc 4:3–21

    Article  Google Scholar 

  • Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66(4):411–453

    Article  CAS  PubMed  Google Scholar 

  • Hoffman GL (1955) Life-cycle of Diplostomum (baeri?) (Trematoda: Strigidae). J Parasitol 41:22

    Article  Google Scholar 

  • Hoffman GL, Hundley JB (1957) The life-cycle of Diplostomum Baeri Eucaliae n.subsp. (Trematoda: Strigeida). J Parasitol 43(6):613–627

    Article  CAS  PubMed  Google Scholar 

  • Hyslop EJ (1980) Stomach content analysis-a review of methods and their application. J Fish Biol 17:411–429

    Article  Google Scholar 

  • Ivanovic J, Baltic MZ, Boskovic M, Kilibarda N, Dokmanovic M, Markovic R, Janjic J, Baltic B (2015) Anisakis infection and allergy in humans. Procedia Food Sci 5:101–104

    Article  Google Scholar 

  • Justine JL, Briand MJ, Bray RA (2012) A quick and simple method, usable in the field, for collecting parasites in suitable condition for both morphological and molecular studies. Parasitol Res 111:341–351

    Article  PubMed  Google Scholar 

  • Kennedy CR, Bates RM, Brown AF (1989) Discontinuous distributions of the fish acanthocephalans Pomphorhynchus laevis and Acanthocephalus anguillae in Britain and in Ireland: an hypothesis. J Fish Biol 34:607–619

    Article  Google Scholar 

  • Klimpel S, Rückert S, Piatkowski U, Palm HW, Hanel R (2006) Diet and metazoan parasites of silver scabbard fish Lepidopus caudatus from the Great Meteor Seamount (North Atlantic). Mar Ecol Prog Ser 315:249–257

    Article  Google Scholar 

  • Kuhn T, Hailer F, Palm HW, Klimpel S (2013) Global assessment of molecularly identified Anisakis Dujardin, 1845 (Nematoda: Anisakidae) in their teleost intermediate hosts. Folia Parasit 60(2):123–134

    Article  CAS  Google Scholar 

  • Lane A, Willemsen PR (2004) Collaborative effort looks into biofouling. Fish Farming International (Sep. 2004):34–35

  • Liu Y, Olaussen JO, Skonhoft A (2011) Wild and farmed salmon in Norway. A review. Mar Policy 35:413–418

    Article  Google Scholar 

  • Locke SA, McLaughlin JD, Dayanandan S, Marcogliese DJ (2010) Diversity and specificity in Diplostomum spp. metacercariae in freshwater fishes revealed by cytochrome c oxidase I and internal transcribed spacer sequences. Int J Parasitol 40:333–343

    Article  CAS  PubMed  Google Scholar 

  • MacKinnon BM (1997) Sea lice: a review. World Aquaculture 28:5–10

    Google Scholar 

  • Mattiucci S, Fazii P, De Rosa A, Paoletti M, Megna AS, Glielmo A, De Angelis M, Costa A, Meucci C, Calvaruso V, Sorrentini I, Palma G, Bruschi F, Nascetti G (2013) Anisakiasis and gastroallergic reactions associated with Anisakis pegreffii infection, Italy. Emerg Infect Dis 19(3):496–499

    Article  PubMed  PubMed Central  Google Scholar 

  • McCook LJ, Chapman ARO (1991) Community succession following massive ice-scour on an exposed rocky shore: effects of Fucus canopy algae and of mussels during late succession. J Exp Mar Biol Ecol 154:137–169

    Article  Google Scholar 

  • McCook LJ, Chapman ARO (1993) Community succession following massive ice-scour on a rocky intertidal shore: recruitment, competition and predation during early, primary succession. Mar Biol 115:565–575

    Article  Google Scholar 

  • Meinilä M, Kuusela J, Zietara MS, Lumme J (2004) Initial steps of speciation by geographic isolation and host switch in salmonid pathogen Gyrodactylus salaris (Monogenea: Gyrodactylidae). Int J Parasitol 34:515–526

    Article  PubMed  Google Scholar 

  • Mook DH (1981) Effects of disturbance and initial settlement on fouling community structure. Ecology 62:522–526

    Article  Google Scholar 

  • Moravec F (2004) Metazoan parasites of salmonid fishes in Europe. Academia, Prague

    Google Scholar 

  • Morgan S (1995) Sea lice put financial burden on industry. North Aquacult 1:6

    Google Scholar 

  • Moszczynska A, Locke SA, McLaughlin JD, Marcogliese DJ, Crease TJ (2009) Development of primers for the mitochondrial cytochrome c oxidase I gene in digenetic trematodes (Platyhelminthes) illustrates the challenge of barcoding parasitic helminths. Mol Ecol Resour 9:75–82

    Article  CAS  PubMed  Google Scholar 

  • Möller H, Anders K (1986) Diseases and parasites of marine fish. Verlag H. Möller, Kiel

  • Ogawa K (2015) Diseases of cultured marine fishes caused by Platyhelminthes (Monogenea, Digenea, Cestoda). Parasitology 142:178–195

    Article  CAS  PubMed  Google Scholar 

  • Olafsen T (2006) Cost analysis of different antifouling strategies. SINTEF Fisheries and Aquaculture:1–23 (in Norwegian)

  • Olsen Y (2015) How can mariculture better help feed humanity? Front Mar Sci 2:46

    Article  Google Scholar 

  • Palm HW, Klimpel S, Bucher C (1999) Checklist of metazoan fish parasites of German coastal waters. Berichte aus dem Institut für Meereskunde an der Christian-Albrecht Universität, Kiel

    Google Scholar 

  • Palm HW, Dobberstein RC (1999) Occurrence of trichodinid ciliates (Peritricha: Urceolariidae) in the Kiel Fjord, Baltic Sea, and its possible use as a biological indicator. Parasitol Res 85:726–732

    Article  CAS  PubMed  Google Scholar 

  • Palm HW (2004) The Trypanorhyncha Diesing, 1863. PKSPLIPB Press, Bogor

    Google Scholar 

  • Palm HW, Bray RA (2014) Marine fish parasitology in Hawaii. Westarp & Partner Digitaldruck, Hohenwarsleben

    Google Scholar 

  • Palmer ED (1939) Diplostomiasis, a hatchery disease of freshwater fishes new to North America. Prog Fish Cult 45:4l–47

    Google Scholar 

  • Pinkas L, Oliphant MD, Iverson ILK (1971) Food habits of albacore, bluefin tuna and bonito in Californian waters. Calif Fish Game 152:1–105

    Google Scholar 

  • Podolska M, Horbowy J, Wyszynski M (2006) Discrimination of Baltic herring populations with respect to Anisakis simplex larvae infection. J Fish Biol 68:1241–1256

    Article  Google Scholar 

  • Remane A, Schlieper C (1971) Biology of brackish water. Wiley Interscience, New York

    Google Scholar 

  • Rosenthal H, Hilge V (2000) Aquaculture production and environmental regulations in Germany. J Appl Ichthyol 16:163–166

    Article  Google Scholar 

  • Sandrock S (2004) Monitoring der Bewuchsentwicklung verschiedener Riffmaterialien. Jahresbericht des Projektes „Künstliches Riff Nienhagen“:1–32 (in German)

  • Sandrock S (2005) Monitoring der Bewuchsentwicklung am künstlichen Riff Nienhagen. Jahresbericht des Projektes „Künstliches Riff Nienhagen“:1–44 (in German)

  • Savini D, Occhipinti-Ambrogi A, Marchini A, Tricarico E, Gherardi F, Olenin S, Gollasch S (2010) The top 27 alien animal species intentionally introduced by European aquaculture and related activities. J Appl Ichthyol 26:1–7

    Article  Google Scholar 

  • Schygula C (2007) Colonisation strategies and benthic community development on artificial reef structures in the south-western Baltic Sea. Dissertation. University of Rostock, Rostock

    Google Scholar 

  • Shariff M, Richards RH, Sommerville C (1980) The histopathology of acute and chronic infections of rainbow trout Salmo gairdneri Richardson with eye flukes, Diplostomum spp. J Fish Dis 3:455–465

    Article  Google Scholar 

  • Shinn AP, Pratoomyot J, Bron JE, Paladini G, Brooker EE, Brooker AJ (2015) Economic costs of protistan and metazoan parasites to global mariculture. Parasitology 142:196–270

    Article  CAS  PubMed  Google Scholar 

  • Skov JF, Mehrdana MH, Marana QZM, Bahlool RM, Jaafar D, Sindberg D, Jensen HM, Kania PW, Buchmann K (2014) Parasite infections of rainbow trout (Oncorhynchus mykiss) from Danish mariculture. Aquaculture 434:486–492

    Article  Google Scholar 

  • Speed P, Pauley GB (1985) Feasibility of protecting rainbow trout, Salmo gairdneri Richardson, by immunizing against the eye fluke, Diplostomum spathaceum. J Fish Dis 26:739–744

    Google Scholar 

  • Steinsträsser W (1936) Acanthocephalen als Forellenparasiten. Zeitschrift für Fischerei 34:177–212 (in German)

    Google Scholar 

  • Szostakowska B, Myjak B, Wyszyński M, Piętkiewicz H, Rokicki J (2005) Prevalence of anisakin nematodes in fish from southern Baltic Sea. Pol J Microbiol 54:41–45

    PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unger P, Klimpel S, Lang T, Palm HW (2014a) Metazoan parasites from herring (Clupea harengus L.) as biological indicators in the Baltic Sea. Acta Parasitol 59:518–528

    Article  PubMed  Google Scholar 

  • Unger P, Palm HW, Helbig R, Weigand F, Lewicki C (2014b) Bewuchs von Aquakulturnetzen im Ostseeeinsatz: Kein Jahr gleicht dem Anderen. Fischerei und Fischmarkt in MV 3:39–44 (in German)

    Google Scholar 

  • Unger P, Palm HW (2016) Parasitation of sea trout (Salmo trutta trutta L.) from the spawning ground and German coastal waters off Mecklenburg-Western Pomerania, Baltic Sea. Parasitol Res 115(1):165–174

    Article  PubMed  Google Scholar 

  • Wallentinus I (1979) Environmental influence on benthic macrovegetation in the Trosa-Askö area, northern Baltic proper. II. The ecology of macroalgae and submersed phanerogams. Contribution from the Askö Laboratory, University of Stockholm, Sweden 25:1–210

    Google Scholar 

  • Yamaguti S (1963) Systema Helminthum. Volume V: Acanthocephala. Interscience publishers. Wiley, New York

    Google Scholar 

  • Zander CD, Reimer LW, Barz K (1999) Parasite communities of the Salzhaff (Northwest Mecklenburg, Baltic Sea). I. Structure and dynamics of communities of littoral fish, especially small-sized fish. Parasitol Res 85:356–372

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Ministry of Agriculture, Environment and Consumer Protection of Mecklenburg Western Pomerania for supporting research on cultured rainbow trout in Mecklenburg-Western Pomerania. This project was funded by the pilot project “BalticIMTA: Verfahrensentwicklung einer Integrierten Multi Trophischen Aquakultur für die Küstengewässer Mecklenburg-Vorpommerns” (Cont. Nr.: VI-560/730-32610-2012/067, European Fisheries Fund-EFF). We are grateful to the operators of the accompanied mariculture facility off Rostock and the anonymous reviewers for their very helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Unger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unger, P., Palm, H.W. Parasite risk of maricultured rainbow trout (Oncorhynchus mykiss Walbaum, 1792) in the Western Baltic Sea, Germany. Aquacult Int 25, 975–989 (2017). https://doi.org/10.1007/s10499-016-0096-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-016-0096-8

Keywords

Navigation