Skip to main content
Log in

Mass balance of fishponds: are they sources or sinks of phosphorus?

  • Carp pond aquaculture, product processing and quality
  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Fishponds exhibit high natural retention potential for phosphorus, which enters the ponds from non-point, diffuse and point sources, as well as from aquaculture management. Results of phosphorus mass balance monitoring of nine large fishponds (60–449 ha) over 2010–2014 revealed total phosphorus retention ranging between −66 % (sink) and +52 % (release) of the P loads from inflows, i.e. specific P retention varied between −7.83 g m−2 (sink) and 1.00 g m−2 (release) of surface area, per one fish production cycle. Retention of P was eliminated by application of fertilizers (with simultaneous fish feed application) during fish production process and/or by massive P release from fishpond sediments after previous heavy loads. P retention could be increased by preference of surface water outflow instead of bottom discharge and/or also by minimizing of emissions of suspended sediment particles during a fish harvesting. The real role of fishponds in transport processes of P throughout a watershed could be eruditely assessed only by following newly proposed method called “new approach” when P input (via inflows) and P output (via outflows) are compared with natural fishpond ability to retain P, which is determined by a simple model proposed by Hejzlar et al. (2006). For evaluation of effect of actual fishery management, the “culture-balance” method is suitable too. If the P inputs (stocked fish, fertilizing, feeding) and outputs (harvested fish) derived from fishery practice were in balance, the P retention did not decline. However, in condition of inputs > outputs, the P retention appreciably ceased or was totally eliminated. It was concluded that fishponds could serve as an important sink of P transported throughout a watershed even under semi-intensive fish (common carp) production condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adámek Z, Maršálek B (2013) Bioturbation of sediments by benthic macroinvertebrates and fish and its implication for pond ecosystems: a review. Aquac Int 21(1):1–17

    Article  Google Scholar 

  • Adámek Z, Linhart O, Kratochvíl M, Flajšhans M, Randák T, Policar T, Masojídek J, Kozák P (2012) Aquaculture in the Czech Republic in 2012: modern European prosperous sector based on thousand-year history of pond culture. Aquac Eur 37(2):5–14

    Google Scholar 

  • Arlinghaus R, Mehner T (2003) Socio-economic characterisation of specialised common carp (Cyprinus carpio L.) anglers in Germany, and implications for inland fisheries management and eutrophication control. Fish Res 61:19–33

    Article  Google Scholar 

  • Banas D, Masson G, Leglize L, Pihan J-C (2002) Discharge of sediments, nitrogen (N) and phosphorus (P) during the emptying of extensive fishponds: effect of rain-fall and management practices. Hydrobiologia 472:29–38

    Article  CAS  Google Scholar 

  • Barszczewski J, Kaca E (2012) Water retention in ponds and the improvement of its quality during carp production. J Water Land Dev 17:31–38

    Article  Google Scholar 

  • Billard R, Sevrin-Reyssac J (1993) Negative and positive impacts of pond fish culture on the environment. Production, environment and quality. Eur Aquac Soc 18:17–29

    Google Scholar 

  • Brabrand A, Faafeng BA, Nilssen JPM (1990) Relative importance of phosphorus supply to phytoplankton production: fish excretion versus external loading. Can J Fish Aquat Sci 47:364–372

    Article  Google Scholar 

  • Butz I (1988) Situation of fish-farm effluents in Austria. Monistettuja Julkaisuja (Helsinki) 74:4–12

    Google Scholar 

  • Butz I, Donner H (1991) Beeinflussung des Vorfluters durch die Abfischung von Karpfenteichen. Osterr Fisch 44(5–6):123–141

    Google Scholar 

  • Čermák B, Cempírková R (2008) Conventional and ecological feeds. University of South Bohemia České Budějovice, České Budějovice (in Czech)

    Google Scholar 

  • Chakrabarty D, Das SK (2007) Bioturbation-induced phosphorus release from an insoluble phosphate source. Biosystems 90(2):309–313

    Article  CAS  PubMed  Google Scholar 

  • Dulic Z, Subakov-Simic G, Ciric M, Relic R, Lakic N, Stankovic M, Markovic Z (2010) Water quality in semi-intensive carp production system using three different feeds. Bulg J Agric Sci 16(3):266–274

    Google Scholar 

  • Duras J, Potužák J (2012) Phosphorus mass balance in selected production and recreational fishponds. Vodní hospodářství 62(6):210–216 (in Czech)

    CAS  Google Scholar 

  • Duras J, Potužák J, Marcel M, Pechar L (2015) Fishponds and water quality. Vodní hospodářství 65(7):16–24 (in Czech)

    Google Scholar 

  • EN ISO 10304-1 (2009) Water quality—determination of dissolved anions by liquid chromatography of ions—Part 1: determination of bromide, chloride, fluoride, nitrate, nitrite, phosphate and sulfate

  • EN 12260 (2003) Water quality. Determination of nitrogen. Determination of bound nitrogen (TNb), following oxidation to nitrogen oxides

  • EN ISO 17294-2 (2004) Water quality—application of inductively coupled plasma mass spectrometry (ICP-MS)—Part 2: determination of 62 elements

  • Gál D, Pekár F, Kosáros T, Kerepeczki E (2013) Potential of nutrient reutilisation in combined intensive–extensive pond systems. Aquac Int 21:927–937

    Article  Google Scholar 

  • Hejzlar J, Šámalová K, Boers P, Kronvang B (2006) Modelling phosphorus retention in lakes and reservoirs. Water Air Soil Pollut Focus 6:487–494

    Article  CAS  Google Scholar 

  • Hlaváč D, Adámek Z, Hartman P, Másílko J (2014) Effects of supplementary feeding in carp ponds on discharge water quality: a review. Aquac Int 22(1):299–320

    Article  Google Scholar 

  • Huser BJ, Bajer PG, Chizinski CJ, Sorensen PW (2016) Effects of common carp (Cyprinus carpio) on sediment mixing depth and mobile phosphorus mass in the active sediment layer of a shallow lake. Hydrobiologia 763(1):23–33

    Article  CAS  Google Scholar 

  • ISO 10260 (1992) Water quality, measurement of biochemical parameters; spectrometric determination of chlorophyll-a concentration. Beuth Verlag GmbH Berlin-Wien-Zürich

  • ISO 7150-1 (1994) Water quality—determination of ammonium. Part 1: manual spectrometric method

  • ISO 9963-1 (1994) Water quality—determination of alkalinity. Part 1: determination of total and composite alkalinity

  • Kaushik SJ (1993) Nutrient requirements, supply and utilization in the context of carp culture. Aquaculture 129:225–241

    Article  Google Scholar 

  • Kestemont P (1995) Different systems of carp production and their impacts on the environment. Aquaculture 129:347–372

    Article  Google Scholar 

  • Knösche R, Scheckenbach K, Pfeifer M, Weissenbach H (2000) Balances of phosphorus and nitrogen in carp ponds. Fish Manag Ecol 7:15–22

    Article  Google Scholar 

  • Kořínek V, Fott J, Fuksa J, Lellák J, Pražáková M (1987) Carp ponds of Central Europe. In: Michael RG (ed) Managed aquatic ecosystems, ecosystems of the world. Elsevier, Amsterdam

    Google Scholar 

  • Lamarra VA Jr (1975) Digestive activities of carp as a major contributor to the nutrient loading of lakes. Verh Int Ver Limmol 19:2461–2468

    Google Scholar 

  • Niesar M, Arlinghaus R, Rennert B, Mehner T (2004) Coupling insights from a carp, Cyprinus carpio, angler survey with feeding experiments to evaluate composition, quality and phosphorus input of groundbait in coarse fishing. Fish Manag Ecol 11:225–235

    Article  Google Scholar 

  • Nürnberg GK (1985) Availability of phosphorus upwelling from iron-rich anoxic hypolimnia. Arch Hydrobiol 104:459–476

    Google Scholar 

  • Nürnberg GK, Peters RH (1984) The importance of internal phosphorus load to the eutrophication of lakes with anoxic hypolimnia. Verh Int Ver Limnol 22:190–194

    Google Scholar 

  • Opuszyński K (1980) The role of fishery management in counteracting eutrophication processes. In: Hypertrophic ecosystems, vol 2. Developments in Hydrobiology, Springer, Netherlands, pp 263–269

  • Pechar L (1995) Long-term changes in fish pond management as an unplanned ecosystem experiment: importance of zooplankton structure, nutrients and light for species composition of cyanobacterial blooms. Wat Sci Technol 32(4):187–196

    Article  Google Scholar 

  • Pechar L (2000) Impacts of long-term changes in fishery management on the trophic level water quality in Czech fish ponds. Fish Manag Ecol 7(1–2):23–31

    Article  Google Scholar 

  • Pechar L (2015) A hundred years of fishpond eutrophication—combined effect of nutrient enhancement and increasing of fish stock. Vodní Hospodářství 65(7):1–6 (in Czech)

    Google Scholar 

  • Pechar L, Přikryl I, Faina R (2002) Hydrobiological evaluation of Třeboň fishponds at the end of the nineteenth century. In: Květ J, Jeník J, Soukupová L (eds) Freshwater wetlands and their sustainable future. UNESCO and The Parthenon Publishing Group, Paris

    Google Scholar 

  • Potužák J, Duras J (2015) Nutrient retention in fishponds—importance, assessment and possible use. Vodní Hospodářství 65(7):7–15 (in Czech)

    Google Scholar 

  • Potužák J, Hůda J, Pechar L (2007) Changes in fish production effectivity in eutrophic fishponds—impact of zooplankton structure. Aquac Int 15(3–4):201–210

    Article  Google Scholar 

  • Potužák J, Duras J, Borovec J, Rucki J (2010a) Rybníky Dehtář a Hejtman—látkové bilance. Sborník semináře Revitalizace Orlické nádrže, 12.-13. 10. 2010, Písek, Česká republika. Vysoká škola technická a ekonomická v Českých Budějovicích, 119–136 (in Czech)

  • Potužák J, Duras J, Borovec J, Rohlík V, Langhansová M, Kubelka A (2010b) První výsledky živinové bilance rybníka Rožmberk s posouzením vlivu na řeku Lužnici. Sborník semináře Revitalizace Orlické nádrže, 12.-13. 10. 2010, Písek, Česká republika. Vysoká škola technická a ekonomická v Českých Budějovicích, 99–118 (in Czech)

  • Psenner R, Pucsko R (1988) Phosphorus fractionation: advantages and limits of the method for the study of sediment P origins and interactions. Arch Hydrobiol Beih Ergebn Limnol 30:43–59

    CAS  Google Scholar 

  • Ritvo G, Kochba M, Avnimelech Y (2004) The effect of common carp bioturbation on fishpond bottom soil. Aquaculture 242(1–4):345–356

    Article  Google Scholar 

  • Rothschein J (1983) Phosphorus cycle and fish in water supply reservoirs. Vodní Hospodářství B33:9–13 (in Slovak)

    Google Scholar 

  • Schneider O, Sereti V, Eding EH, Verreth JAJ (2004) Analysis of nutrient flows in integrated intensive aquaculture systems. Aquac Eng 32:379–401

    Article  Google Scholar 

  • Sharpley A, Moyer B (2000) Phosphorus forms in manure and compost and their release during simulated rainfall. J Environ Qual 29:1462–1469

    Article  CAS  Google Scholar 

  • Steiner T, Mosenthin R, Zimmermann B, Greiner R, Roth S (2007) Distribution of phytase activity, total phosphorus and phytate phosphorus in legume seeds, cereals and cereal by products as influenced by harvest year and cultivar. Anim Feed Sci Technol 133(3–4):320–334

    Article  CAS  Google Scholar 

  • Sterner RW, George NB (2000) Carbon, nitrogen, and phosphorus stoichiometry of cyprinid fishes. Ecology 81(1):127–140

    Article  Google Scholar 

  • Vallod D, Sarrazin B (2010) Water quality characteristics for draining and extensive fish farming pond. Hydrol Sci J 55(3):394–402

    Article  CAS  Google Scholar 

  • Vollenweider RA (1976) Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem Ist Ital Idrobiol 33:53–83

    CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Ministry of Education, Youth and Sports of the Czech Republic—projects “CENAKVA” (No. CZ.1.05/2.1.00/01.0024) and “CENAKVA II” (No. LO1205 under the NPU I program). The authors are grateful to fishery companies Rybářství Třeboň a.s., Rybářství Hluboká cz. s.r.o, Blatenská ryba, s.r.o and Rybářství Kardašova Řečice s.r.o. for providing fishery production data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Potužák.

Additional information

Guest editors: Zuzana Linhartová and Jan Mráz/Carp pond aquaculture, product processing and quality.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potužák, J., Duras, J. & Drozd, B. Mass balance of fishponds: are they sources or sinks of phosphorus?. Aquacult Int 24, 1725–1745 (2016). https://doi.org/10.1007/s10499-016-0071-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-016-0071-4

Keywords

Navigation