Skip to main content

Advertisement

Log in

Dissolution Rates of Biogenic Carbonates in Natural Seawater at Different pCO2 Conditions: A Laboratory Study

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

The bulk dissolution rates of six biogenic carbonates (goose barnacle, benthic foraminifera, bryozoan, sea urchin, and two types of coralline algae) and a sample of mixed sediment from the Bermuda carbonate platform were measured in natural seawater at pCO2 values ranging from approximately 3000 to 5500 μatm. This range of pCO2 values encompassed values regularly observed in porewaters at a depth of a few cm in carbonate sediments at shallow water depths (<15 m) on the Bermuda carbonate platform. The biogenic carbonates included calcites of varying Mg content (2–17 mol%) and a range of specific surface areas (0.01–2.7 m2 g−1) as determined by BET gas adsorption. Measured rates of dissolution increased with increasing pCO2 treatment for all substrates and ranged from 2.5 to 18 μmol g−1 h−1. The highest rates of dissolution were observed for the bryozoans and the lowest rates for the goose barnacles. The relative ranking in dissolution rates between different substrates was consistent at all pCO2 levels, indicating that substrates dissolve sequentially and that some substrates will be more vulnerable than others to rising CO2 and ocean acidification. Furthermore, dissolution rates were found to increase with increasing Mg content, though the relative dissolution rates were observed to be a function of both Mg content and microstructure (surface area).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andersson AJ, Gledhill D (2013) Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Annu Rev Mar Sci 5:321–348

    Article  Google Scholar 

  • Andersson AJ, Mackenzie FT (2004) Shallow-water oceans: a source or sink of atmospheric CO2? Front Ecol Environ 2:348–353

    Google Scholar 

  • Andersson AJ, Mackenzie FT, Ver LM (2003) Solution of shallow-water carbonates: an insignificant buffer against rising atmospheric CO2. Geology 31:513–516

    Article  Google Scholar 

  • Andersson AJ, Mackenzie FT, Lerman A (2005) Coastal ocean and carbonate systems in the high CO2 world of the Anthropocene. Am J Sci 305:875–918

    Article  Google Scholar 

  • Andersson AJ, Bates NR, Mackenzie FT (2007) Dissolution of carbonate sediments under rising pCO2 and ocean acidification: observations from Devil’s Hole, Bermuda. Aquat Geochem 13:237–264

    Article  Google Scholar 

  • Andersson AJ, Mackenzie FT, Bates NR (2008) Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers. Mar Ecol Prog Ser 373:265–273

    Article  Google Scholar 

  • Andersson AJ, Kuffner IB, Mackenzie FT, Jokiel PL, Rodgers KS, Tan A (2009) Net Loss of CaCO3 from a subtropical calcifying community due to seawater acidification: mesocosm-scale experimental evidence. Biogeosciences 6:1811–1823

  • Andersson AJ, Mackenzie FT, Gattuso J-P (2011) Effects of ocean acidification on benthic processes, organisms, and ecosystems. In: Gattuso J-P, Hansson L (eds) Ocean acidification. Oxford University Press, New York, pp 122–153

    Google Scholar 

  • Arakaki T, Mucci A (1995) A continuous and mechanistic representation of calcite reaction-controlled kinetics in dilute solutions at 25 C and 1 atm total pressure. Aquat Geochem 1:105–130

    Article  Google Scholar 

  • Archer D, Maier-Reimer E (1994) Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367:260–263

    Article  Google Scholar 

  • Archer D, Emerson S, Reimers C (1989) Dissolution of calcite in deep-sea sediments: pH and O2 microelectrode results. Geochim Cosmochim Acta 53:2831–2845

    Article  Google Scholar 

  • Bischoff WD, Bishop FC, Mackenzie FT (1983) Biogenically produced magnesian calcite; inhomogeneities in chemical and physical properties; comparison with synthetic phases. Am Mineral 68:1183–1188

    Google Scholar 

  • Bischoff WD, Mackenzie FT, Bishop FC (1987) Stabilities of synthetic magnesian calcites in aqueous solution: comparison with biogenic materials. Geochim Cosmochim Acta 51:1413–1423

    Article  Google Scholar 

  • Bischoff WD, Bertram MA, Mackenzie FT, Bishop FC (1993) Diagenetic stabilization pathways of magnesian calcites. Carbonates Evaporites 8:82–89

    Article  Google Scholar 

  • Bockmon E, Dickson AG (2014) A seawater filtration method suitable for total dissolved inorganic carbon and pH analyses. Limnol Oceanogr Methods 12:191–195

    Google Scholar 

  • Broecker WS, Broecker S (1974) Carbonate dissolution on the western flank of the East Pacific Rise. Studies in Paleoceanography, Spec. Publ. Soc. Econ. Paleontol. Mineral., 20W. W. Hay, 44–57

  • Busenberg E, Plummer LN (1986) A comparative study of the dissolution and crystal growth kinetics of calcite and aragonite. Stud Diagenesis 105:139–168

    Google Scholar 

  • Busenberg E, Plummer LN (1989) Thermodynamics of magnesian calcite solid-solutions at 25 C and 1 atm total pressure. Geochim Cosmochim Acta 53:1189–1208

    Article  Google Scholar 

  • Chan N, Connolly SR (2013) Sensitivity of coral calcification to ocean acidification: a meta-analysis. Glob Change Biol 19:282–290

    Article  Google Scholar 

  • Chave KE, Schmalz RF (1966) Carbonate–seawater interactions. Geochim Cosmochim Acta 30:1037–1048

    Article  Google Scholar 

  • Chou L, Garrels RM, Wollast R (1989) Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. Chem Geol 78:269–282

    Article  Google Scholar 

  • Comeau S, Carpenter RC, Lantz C, Edmunds PJ (2015) Ocean acidification accelerates dissolution of experimental coral reef communities. Biogeosciences 12:365–372

    Article  Google Scholar 

  • Cubillas P, Köhler S, Prieto M et al (2005) Experimental determination of the dissolution rates of calcite, aragonite, and bivalves. Chem Geol 216:59–77

    Article  Google Scholar 

  • Cyronak T, Santos I, Eyre B (2013) Permeable coral reef sediment dissolution driven by elevated pCO2 and pore water advection. Geophys Res Lett 40:4876–4881

    Article  Google Scholar 

  • de Kanel J, Morse JW (1979) A simple technique for surface area determination. J Phys E Sci Instr 12:272

    Article  Google Scholar 

  • Dickson AG (1993) pH buffers for sea water media based on the total hydrogen ion concentration scale. Deep Sea Res 40:107–118

    Article  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res 34:1733–1743

    Article  Google Scholar 

  • Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO2 measurements. North Pacific Marine Science Organization, Sidney, PICES special publication 3:191

    Google Scholar 

  • Erez J, Reynaud S, Silverman J, Schneider K, Allemand D (2011) Coral calcification under ocean acidification and global change. In: Dubinsky S, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer Science + Business Media B. V., Dordrecht, pp 151–5 176

  • Eyre B, Andersson AJ, Cyronak T (2014) Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat Clim Change 4:969–976

    Article  Google Scholar 

  • Friedman GM (1964) Early diagenesis and lithification in carbonate sediments. J Sediment Res 34:1307–1314

    Google Scholar 

  • Gehlen M, Bassinot FC, Chou L, McCorkle D (2005) Reassessing the dissolution of marine carbonates: II. Reaction kinetics. Deep Sea Res Oceanogr Res Pap 52:1461–1476

    Article  Google Scholar 

  • Goldsmith JR, Graf DL, Heard HC (1961) Lattice constants of the calcium-magnesium carbonates. Am Mineral 46:453–457

    Google Scholar 

  • Hales B, Emerson S (1997) Evidence in support of first-order dissolution kinetics of calcite in seawater. Earth Planet Sci Lett 148:317–327

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  Google Scholar 

  • Hofmann GE, Barry JP, Edmunds PJ et al (2010) The effect of ocean acidification on calcifying organisms in marine ecosystems: an organism-to-ecosystem perspective. Annu Rev Ecol Evol Syst 41:127–147

    Article  Google Scholar 

  • Hubbard DK, Burke RB, Gill IP (1998) Where’s the reef: the role of framework in the Holocene. Carbonates Evaporites 13:3–9

    Article  Google Scholar 

  • Jahnke RA, Jahnke DB (2004) Calcium carbonate dissolution in deep sea sediments: reconciling microelectrode, pore water and benthic flux chamber results. Geochim Cosmochim Acta 68:47–59

    Article  Google Scholar 

  • Keir RS (1980) The dissolution kinetics of biogenic calcium carbonates in seawater. Geochim Cosmochim Acta 44:241–252

    Article  Google Scholar 

  • Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res 110:C09S07

    Google Scholar 

  • Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. In: ORNL/CDIAC-105 (ed) Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge

  • Mackenzie FT, Bischoff WD, Bishop FC, Loijens M, Schoonmaker J, Wollast R (1983) Magnesian calcites: low temperature occurrence, solubility and solid-solution behavior. In: Reeder RJ (ed) Carbonates: mineralogy and chemistry. Reviews in Mineralogy, vol 11. Mineralogical Society of America, Washington, pp 97–143

  • Mehrbach C, Culberso CH, Hawley JE, Pytkowic RM (1973) Measurement of apparent dissociation-constants of carbonic-acid in seawater at atmospheric-pressure. Limnol Oceanogr 18:897–907

    Article  Google Scholar 

  • Morse JW (1974a) Dissolution kinetics of calcium carbonate in sea water; III, a new method for the study of carbonate reaction kinetics. Am J Sci 274:97–107

    Article  Google Scholar 

  • Morse JW (1974b) Dissolution kinetics of calcium carbonate in sea water; V, effects of natural inhibitors and the position of the chemical lysocline. Am J Sci 274:638–647

    Article  Google Scholar 

  • Morse JW, Arvidson RS (2002) The dissolution kinetics of major sedimentary carbonate minerals. Earth Sci Rev 58:51–84

    Article  Google Scholar 

  • Morse JW, Andersson AJ, Mackenzie FT (2006) Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean acidification”: role of high Mg-calcites. Geochim Cosmochim Acta 70:5814–5830

    Article  Google Scholar 

  • Morse JW, Arvidson RS, Lüttge A (2007) Calcium carbonate formation and dissolution. Chem Rev 107:342–381

    Article  Google Scholar 

  • Müller M, Schulz K, Riebesell U (2010) Effects of long-term high CO2 exposure on two species of coccolithophores. Biogeosci BG 7:1109–1116

    Article  Google Scholar 

  • Nash MC, Opdyke BN, Wu Z et al (2013) Simple X-ray diffraction techniques to identify Mg calcite, dolomite, and magnesite in tropical coralline algae and assess peak asymmetry. J Sediment Res 83:1085–1099

    Google Scholar 

  • Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422

    Article  Google Scholar 

  • Plummer LN, Mackenzie FT (1974) Predicting mineral solubility from rate data; application to the dissolution of magnesian calcites. Am J Sci 274:61–83

    Article  Google Scholar 

  • Plummer LN, Wigley TML (1976) The dissolution of calcite in CO2-saturated solutions at 25 °C and 1 atmosphere total pressure. Geochim Cosmochim Acta 40:191–202

    Article  Google Scholar 

  • Plummer LN, Wigley TML, Parkhurst DL (1978) The kinetics of calcite dissolution in CO2–water systems at 5 degrees to 60 degrees C and 0.0 to 1.0 atm CO2. Am J Sci 278:179–216

    Article  Google Scholar 

  • Rickard D, Sjoeberg EL (1983) Mixed kinetic control of calcite dissolution rates. Am J Sci 283:815–830

    Article  Google Scholar 

  • Riebesell U, Zondervan I, Rost B et al (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367

    Article  Google Scholar 

  • Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134

    Article  Google Scholar 

  • Schott J, Brantley S, Crerar D et al (1989) Dissolution kinetics of strained calcite. Geochim Cosmochim Acta 53:373–382

    Article  Google Scholar 

  • Silverman J, Lazar B, Erez J (2007) Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef. J Geophys Res Oceans 1978–2012(112):C05004

    Google Scholar 

  • Silverman J, Lazar B, Cao L et al (2009) Coral reefs may start dissolving when atmospheric CO2 doubles. Geophys Res Lett 36:LO5606

    Article  Google Scholar 

  • Sjöberg EL (1976) A fundamental equation for calcite dissolution kinetics. Geochim Cosmochim Acta 40:441–447

    Article  Google Scholar 

  • Svensson U, Dreybrodt W (1992) Dissolution kinetics of natural calcite minerals in CO2–water systems approaching calcite equilibrium. Chem Geol 100:129–145

    Article  Google Scholar 

  • Tribollet A, Godinot C, Atkinson M, Langdon C (2009) Effects of elevated pCO2 on dissolution of coral carbonates by microbial euendoliths. Glob Biogeochem Cycles 23:GB3008

    Article  Google Scholar 

  • Walter LM, Morse JW (1984) Reactive surface area of skeletal carbonates during dissolution: effect of grain size. J Sediment Res 54:1081–1090

    Google Scholar 

  • Walter LM, Morse JW (1985) The dissolution kinetics of shallow marine carbonates in seawater: a laboratory study. Geochim Cosmochim Acta 49:1503–1513

    Article  Google Scholar 

  • Woosley RJ, Millero FJ, Grosell M (2012) The solubility of fish-produced high magnesium calcite in seawater. J Geophys Sci 117:C1048

    Google Scholar 

  • Yamamoto S, Kayanne H, Terai M et al (2012) Threshold of carbonate saturation state determined by CO2 control experiment. Biogeosciences 9:1441–1450

    Article  Google Scholar 

Download references

Acknowledgments

A.J.A gratefully acknowledges support from NSF Grants OCE 09-28406 and OCE 12-55042 and NOAA Grant NA10AR4310094. We are also grateful for the excellent comments provided by two anonymous reviewers, which significantly helped to improve an early version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mallory Pickett.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pickett, M., Andersson, A.J. Dissolution Rates of Biogenic Carbonates in Natural Seawater at Different pCO2 Conditions: A Laboratory Study. Aquat Geochem 21, 459–485 (2015). https://doi.org/10.1007/s10498-015-9261-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-015-9261-3

Keywords

Navigation