Skip to main content

Advertisement

Log in

Loss of AR-regulated AFF3 contributes to prostate cancer progression and reduces ferroptosis sensitivity by downregulating ACSL4 based on single-cell sequencing analysis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Prostate cancer (PCa) is one of the most common cancers affecting the health of men worldwide. Castration-resistant prostate cancer (CRPC), the advanced and refractory phase of prostate cancer, has multiple mechanisms of resistance to androgen deprivation therapy (ADT) such as AR mutations, aberrant androgen synthase, and abnormal expression of AR-related genes. Based on the research of the AR pathway, new drugs for the treatment of CRPC have been developed in clinical practice, such as Abiraterone and enzalutamide. However, many areas in this pathway are still worth exploring. In this study, single-cell sequencing analysis was utilized to scrutinize significant genes in the androgen receptor (AR) pathway related to CRPC. Our analysis of single-cell sequencing combined with bulk-cell sequencing revealed a substantial downregulation of AR-regulated AFF3 in CRPC. Overexpression of AFF3 restricted the proliferation and migration of prostate cancer cells whilst also increasing their sensitivity towards enzalutamide, while knockdown of AFF3 had the opposite effect. To elucidate the mechanism of tumor inhibition by AFF3, we applied GSVA and GSEA to investigate the metabolic pathways related to AFF3 and revealed that AFF3 had an impact on fatty acids metabolism and ferroptosis through the regulation of ACSL4 protein expression. Based on correlation analysis and flow cytometry, we can speculate that AFF3 can impact the sensitivity of the CRPC cell lines to the ferroptosis inducer (RSL3) by regulating ACSL4. Therefore, our findings may provide new insights into the mechanisms of drug resistance in CRPC, and AFF3 may serve as a novel prognostic biomarker in prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

Abbreviations

PCa:

Prostate cancer

HSPC:

Hormone-sensitive prostate cancer

CRPC:

Castration-resistant prostate cancer

ADT:

Androgen deprivation therapy

AR:

Androgen receptor

RP:

Radical prostatectomy

MSKCC:

The Memorial Sloan Kettering Cancer Center

GSEA:

Gene set enrichment analysis

GSVA:

Gene set variation analysis

DHT:

Dihydrotestosterone

ChIP:

Chromatin immunoprecipitation

RFS:

Recurrence-free survival

ROC:

Time-dependent receiver operating characteristic

AUC:

Area under the curve

DEGs:

Differential expression genes

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A (2023) Cancer statistics, 2023. CA Cancer J Clin 73(1):17–48

    Article  PubMed  Google Scholar 

  2. Rebello RJ, Oing C, Knudsen KE, Loeb S, Johnson DC, Reiter RE et al (2021) Prostate cancer. Nat Rev Dis Primers 7(1):9

    Article  PubMed  Google Scholar 

  3. Van den Broeck T, van den Bergh RCN, Arfi N, Gross T, Moris L, Briers E et al (2019) Prognostic value of biochemical recurrence following treatment with curative intent for prostate Cancer: a systematic review. Eur Urol 75(6):967–987

    Article  PubMed  Google Scholar 

  4. Zhang Y, Fan A, Li Y, Liu Z, Yu L, Guo J et al (2023) Single-cell RNA sequencing reveals that HSD17B2 in cancer-associated fibroblasts promotes the development and progression of castration-resistant prostate cancer. Cancer Lett 566:216244

    Article  CAS  PubMed  Google Scholar 

  5. Fan A, Zhang Y, Cheng J, Li Y, Chen W (2022) A novel prognostic model for prostate cancer based on androgen biosynthetic and catabolic pathways. Front Oncol 12:950094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hong M, Tao S, Zhang L, Diao LT, Huang X, Huang S et al (2020) RNA sequencing: new technologies and applications in cancer research. J Hematol Oncol 13(1):166

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stubbington MJT, Rozenblatt-Rosen O, Regev A, Teichmann SA (2017) Single-cell transcriptomics to explore the immune system in health and disease. Science 358(6359):58–63

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  8. Price DK, Chau CH, Till C, Goodman PJ, Leach RJ, Johnson-Pais TL et al (2016) Association of androgen metabolism gene polymorphisms with prostate cancer risk and androgen concentrations: results from the prostate Cancer Prevention Trial. Cancer 122(15):2332–2340

    Article  CAS  PubMed  Google Scholar 

  9. Kruse U, Pallasch CP, Bantscheff M, Eberhard D, Frenzel L, Ghidelli S et al (2011) Chemoproteomics-based kinome profiling and target deconvolution of clinical multi-kinase inhibitors in primary chronic lymphocytic leukemia cells. Leukemia 25(1):89–100

    Article  CAS  PubMed  Google Scholar 

  10. Ma C, Staudt LM (1996) LAF-4 encodes a lymphoid nuclear protein with transactivation potential that is homologous to AF-4, the gene fused to MLL in t(4;11) leukemias. Blood 87(2):734–745

    Article  CAS  PubMed  Google Scholar 

  11. Shi Y, Zhao Y, Zhang Y, AiErken N, Shao N, Ye R et al (2018) AFF3 upregulation mediates tamoxifen resistance in breast cancers. J Exp Clin Cancer Res 37(1):254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stahl EA, Raychaudhuri S, Remmers EF, Xie G, Eyre S, Thomson BP et al (2010) Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat Genet 42(6):508–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bowes J, Ho P, Flynn E, Ali F, Marzo-Ortega H, Coates LC et al (2012) Comprehensive assessment of rheumatoid arthritis susceptibility loci in a large psoriatic arthritis cohort. Ann Rheum Dis 71(8):1350–1354

    Article  CAS  PubMed  Google Scholar 

  14. Tsukumo SI, Subramani PG, Seija N, Tabata M, Maekawa Y, Mori Y et al (2022) AFF3, a susceptibility factor for autoimmune diseases, is a molecular facilitator of immunoglobulin class switch recombination. Sci Adv 8(34):eabq0008

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Chen X, Li J, Kang R, Klionsky DJ, Tang D (2021) Ferroptosis: machinery and regulation. Autophagy 17(9):2054–2081

    Article  CAS  PubMed  Google Scholar 

  16. Wei X, Yi X, Zhu XH, Jiang DS (2020) Posttranslational modifications in Ferroptosis. Oxid Med Cell Longev 2020:8832043

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang HL, Hu BX, Li ZL, Du T, Shan JL, Ye ZP et al (2022) PKCbetaII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis. Nat Cell Biol 24(1):88–98

    Article  CAS  PubMed  Google Scholar 

  18. Yang Y, Liu T, Hu C, Xia H, Liu W, Chen J et al (2021) Ferroptosis inducer erastin downregulates androgen receptor and its splice variants in castration–resistant prostate cancer. Oncol Rep 45(4):1–1

    Article  Google Scholar 

  19. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404

    Article  PubMed  Google Scholar 

  20. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W et al (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47

    Article  PubMed  PubMed Central  Google Scholar 

  21. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Hanzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zeng D, Ye Z, Shen R, Yu G, Wu J, Xiong Y et al (2021) IOBR: Multi-omics Immuno-Oncology Biological Research to Decode Tumor Microenvironment and signatures. Front Immunol 12:687975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Beltran H, Beer TM, Carducci MA, de Bono J, Gleave M, Hussain M et al (2011) New therapies for castration-resistant prostate cancer: efficacy and safety. Eur Urol 60(2):279–290

    Article  CAS  PubMed  Google Scholar 

  25. Schweizer MT, Yu EY (2015) Persistent androgen receptor addiction in castration-resistant prostate cancer. J Hematol Oncol 8:128

    Article  PubMed  PubMed Central  Google Scholar 

  26. Castellanos E, Feld E, Horn L (2017) Driven by mutations: the Predictive Value of Mutation Subtype in EGFR-Mutated Non-small Cell Lung Cancer. J Thorac Oncol 12(4):612–623

    Article  PubMed  Google Scholar 

  27. Li B, Severson E, Pignon JC, Zhao H, Li T, Novak J et al (2016) Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol 17(1):174

    Article  PubMed  PubMed Central  Google Scholar 

  28. Diaz-Montero CM, Rini BI, Finke JH (2020) The immunology of renal cell carcinoma. Nat Rev Nephrol 16(12):721–735

    Article  PubMed  Google Scholar 

  29. Tang D, Chen X, Kang R, Kroemer G (2021) Ferroptosis: molecular mechanisms and health implications. Cell Res 31(2):107–125

    Article  CAS  PubMed  Google Scholar 

  30. Bayir H, Dixon SJ, Tyurina YY, Kellum JA, Kagan VE (2023) Ferroptotic mechanisms and therapeutic targeting of iron metabolism and lipid peroxidation in the kidney. Nat Rev Nephrol 19(5):315–336

    Article  CAS  PubMed  Google Scholar 

  31. Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22(4):266–282

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hou J, Jiang C, Wen X, Li C, Xiong S, Yue T et al (2022) ACSL4 as a potential target and biomarker for Anticancer: from Molecular mechanisms to clinical therapeutics. Front Pharmacol 13:949863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jia B, Li J, Song Y, Luo C (2023) ACSL4-mediated ferroptosis and its potential role in central nervous system diseases and injuries. Int J Mol Sci 24(12):10021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ross RK, Coetzee GA, Pearce CL, Reichardt JK, Bretsky P, Kolonel LN et al (1999) Androgen metabolism and prostate cancer: establishing a model of genetic susceptibility. Eur Urol 35(5–6):355–361

    Article  CAS  PubMed  Google Scholar 

  35. Aus G, Abbou CC, Bolla M, Heidenreich A, Schmid HP, van Poppel H et al (2005) EAU guidelines on prostate cancer. Eur Urol 48(4):546–551

    Article  CAS  PubMed  Google Scholar 

  36. Scher HI, Buchanan G, Gerald W, Butler LM, Tilley WD (2004) Targeting the androgen receptor: improving outcomes for castration-resistant prostate cancer. Endocr Relat Cancer 11(3):459–476

    Article  CAS  PubMed  Google Scholar 

  37. Mohler JL, Gregory CW, Ford OH 3rd, Kim D, Weaver CM, Petrusz P et al (2004) The androgen axis in recurrent prostate cancer. Clin Cancer Res 10(2):440–448

    Article  CAS  PubMed  Google Scholar 

  38. Titus MA, Schell MJ, Lih FB, Tomer KB, Mohler JL (2005) Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin Cancer Res 11(13):4653–4657

    Article  CAS  PubMed  Google Scholar 

  39. Locke JA, Guns ES, Lubik AA, Adomat HH, Hendy SC, Wood CA et al (2008) Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res 68(15):6407–6415

    Article  CAS  PubMed  Google Scholar 

  40. Locke JA, Nelson CC, Adomat HH, Hendy SC, Gleave ME, Guns ES (2009) Steroidogenesis inhibitors alter but do not eliminate androgen synthesis mechanisms during progression to castration-resistance in LNCaP prostate xenografts. J Steroid Biochem Mol Biol 115(3–5):126–136

    Article  CAS  PubMed  Google Scholar 

  41. Tan YF, Zhang Y, Ge SY, Zhong F, Sun CY, Xia GW (2022) AR-regulated ZIC5 contributes to the aggressiveness of prostate cancer. Cell Death Discov 8(1):393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Baslan T, Hicks J (2017) Unravelling biology and shifting paradigms in cancer with single-cell sequencing. Nat Rev Cancer 17(9):557–569

    Article  CAS  PubMed  Google Scholar 

  43. Shen MM, Abate-Shen C (2010) Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 24(18):1967–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tan RJ, Gibbons LJ, Potter C, Hyrich KL, Morgan AW, Wilson AG et al (2010) Investigation of rheumatoid arthritis susceptibility genes identifies association of AFF3 and CD226 variants with response to anti-tumour necrosis factor treatment. Ann Rheum Dis 69(6):1029–1035

    Article  CAS  PubMed  Google Scholar 

  45. Risbridger GP, Davis ID, Birrell SN, Tilley WD (2010) Breast and prostate cancer: more similar than different. Nat Rev Cancer 10(3):205–212

    Article  CAS  PubMed  Google Scholar 

  46. Sikora MJ, Cordero KE, Larios JM, Johnson MD, Lippman ME, Rae JM (2009) The androgen metabolite 5alpha-androstane-3beta,17beta-diol (3betaAdiol) induces breast cancer growth via estrogen receptor: implications for aromatase inhibitor resistance. Breast Cancer Res Treat 115(2):289–296

    Article  CAS  PubMed  Google Scholar 

  47. Giunchi F, Fiorentino M, Loda M (2019) The Metabolic Landscape of prostate Cancer. Eur Urol Oncol 2(1):28–36

    Article  PubMed  Google Scholar 

  48. Swinnen JV, Van Veldhoven PP, Esquenet M, Heyns W, Verhoeven G (1996) Androgens markedly stimulate the accumulation of neutral lipids in the human prostatic adenocarcinoma cell line LNCaP. Endocrinology 137(10):4468–4474

    Article  CAS  PubMed  Google Scholar 

  49. Zaidi N, Lupien L, Kuemmerle NB, Kinlaw WB, Swinnen JV, Smans K (2013) Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids. Prog Lipid Res 52(4):585–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cai C, Chen S, Ng P, Bubley GJ, Nelson PS, Mostaghel EA et al (2011) Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Res 71(20):6503–6513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lv Z, Wang J, Wang X, Mo M, Tang G, Xu H et al (2021) Identifying a ferroptosis-related gene signature for Predicting biochemical recurrence of prostate Cancer. Front Cell Dev Biol 9:666025

    Article  PubMed  PubMed Central  Google Scholar 

  52. Maccarinelli F, Coltrini D, Mussi S, Bugatti M, Turati M, Chiodelli P et al (2023) Iron supplementation enhances RSL3-induced ferroptosis to treat naive and prevent castration-resistant prostate cancer. Cell Death Discov 9(1):81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nassar ZD, Mah CY, Dehairs J, Burvenich IJ, Irani S, Centenera MM et al (2020) Human DECR1 is an androgen-repressed survival factor that regulates PUFA oxidation to protect prostate tumor cells from ferroptosis. Elife 9:e54166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang ME, Chen J, Lu Y, Bawcom AR, Wu J, Ou J et al (2023) RB1-deficient prostate tumor growth and metastasis are vulnerable to ferroptosis induction via the E2F/ACSL4 axis. J Clin Invest. https://doi.org/10.1172/JCI166647

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Author information

Authors and Affiliations

Authors

Contributions

WC and ZM performed the study concept and design; AF and YL performed the development of methodology and writing, review, and revision of the paper; AF, YZ, and YL provided acquisition, analysis, and interpretation of data, and statistical analysis; WM, MC and WP provided technical and material support. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Zhongliang Ma or Wei Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval  

This study was approved by the Ethics Committee of Zhongshan Hospital, Fudan University (Approval No: B2020-351R) and written informed consent was obtained from all patients. 

Consent to participate

All animal experiments and protocols were reviewed and approved by the Animal Care and Use Committee of Shanghai University.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, A., Li, Y., Zhang, Y. et al. Loss of AR-regulated AFF3 contributes to prostate cancer progression and reduces ferroptosis sensitivity by downregulating ACSL4 based on single-cell sequencing analysis. Apoptosis (2024). https://doi.org/10.1007/s10495-024-01941-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10495-024-01941-w

Keywords

Navigation