Skip to main content

Advertisement

Log in

Novel CAR-T cells targeting TRKB for the treatment of solid cancer

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Chimeric antigen receptor (CAR) T-cell therapy is highly effective for treating blood cancers such as B-cell malignancies, however, its effectiveness as an approach to treat solid tumors remains to be further explored. Here, we focused on the development of CAR-T cell therapies targeting tropomyosin-related kinase receptor B (TRKB), a highly expressed protein that is significantly associated with tumor progression, malignancy, and drug resistance in multiple forms of aggressive solid tumors. To achieve this, we screened brain-derived neurotrophic factor (BDNF) and neurotrophin 4 (NTF4) ligand-based CAR-T cells for their efficiency in targeting the TRKB receptor in the context of solid tumors, particularly hepatocellular carcinoma and pancreatic cancer. We demonstrated that TRKB is overexpressed not only in hepatocellular carcinoma and pancreatic carcinoma cell lines but also in cancer stem-like cells (CSCs). Notably, BDNF-CAR T and NTF4-CAR T cells could not only effectively target and kill TRKB-expressing pan-cancer cell lines in a dose-dependent manner but also effectively kill CSCs. We also performed in vivo studies to show that NTF4-CAR T cells have a better potential to inhibit the tumor growth of hepatocellular carcinoma xenografts in mice, compared with BDNF-CAR T cells. Taken together, our findings suggest that CAR-T targeting TRKB may be a promising approach for developing novel therapies to treat solid cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data and materials for this study are available from the respective authors upon reasonable request.

Abbreviations

TRKB:

Tropomyosin-related kinase receptor B

TRK:

Tropomyosin-related kinase

BDNF:

Brain-derived neurotrophic factor

NTF4:

Neurotrophin 4

CSCs:

Cancer stem-like cells

CAR-T:

Chimeric antigen receptor T

NTKR2:

Neurotrophic tyrosine kinase receptor 2

scFv:

Single-chain fragment variable

NTD:

Non-transduced T cells

CRS:

Cytokine release syndrome

ICANS:

Cell-associated neurotoxicity syndrome

References

  1. Vargason AM, Anselmo AC, Mitragotri S (2021) The evolution of commercial drug delivery technologies. Nat Biomed Eng 5(9):951–967

    Article  PubMed  Google Scholar 

  2. Singh AK, McGuirk JP (2020) CAR T cells: continuation in a revolution of immunotherapy. Lancet Oncol 21(3):e168–e178

    Article  CAS  PubMed  Google Scholar 

  3. Prasad V (2018) Immunotherapy: tisagenlecleucel—the first approved CAR-T-cell therapy—implications for payers and policy makers. Nat Rev Clin Oncol 15(1):11–12

    Article  MathSciNet  PubMed  Google Scholar 

  4. Lu J, Jiang G (2022) The journey of CAR-T therapy in hematological malignancies. Mol Cancer 21(1):194

    Article  PubMed  PubMed Central  Google Scholar 

  5. Atashzar MR, Baharlou R, Karami J, Abdollahi H, Rezaei R, Pourramezan F, Zoljalali Moghaddam SH (2020) Cancer stem cells: a review from origin to therapeutic implications. J Cell Physiol 235(2):790–803

    Article  CAS  PubMed  Google Scholar 

  6. Kumar D, Kumar S, Gorain M, Tomar D, Patil HS, Radharani NNV, Kumar TVS, Patil TV, Thulasiram HV, Kundu GC (2016) Notch1-MAPK signaling axis regulates CD133(+) cancer stem cell-mediated melanoma growth and angiogenesis. J Invest Dermatol 136(12):2462–2474

    Article  CAS  PubMed  Google Scholar 

  7. Wei W, Hu H, Tan H, Chow LW, Yip AY, Loo WT (2012) Relationship of CD44+CD24−/low breast cancer stem cells and axillary lymph node metastasis. J Trans Med. https://doi.org/10.1186/1479-5876-10-S1-S6

    Article  Google Scholar 

  8. Maalej KM, Merhi M, Inchakalody VP, Mestiri S, Alam M, Maccalli C, Cherif H, Uddin S, Steinhoff M, Marincola FM et al (2023) CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances. Mol Cancer 22(1):20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cocco E, Scaltriti M, Drilon A (2018) NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol 15(12):731–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang X, Prager BC, Wu Q, Kim LJY, Gimple RC, Shi Y, Yang K, Morton AR, Zhou W, Zhu Z et al (2018) Reciprocal signaling between glioblastoma stem cells and differentiated tumor cells promotes malignant progression. Cell Stem Cell 22(4):514-528.e515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jin W, Lee JJ, Kim MS, Son BH, Cho YK, Kim HP (2011) DNA methylation-dependent regulation of TrkA, TrkB, and TrkC genes in human hepatocellular carcinoma. Biochem Biophys Res Commun 406(1):89–95

    Article  CAS  PubMed  Google Scholar 

  12. Johnson MD, Stone B, Thibodeau BJ, Baschnagel AM, Galoforo S, Fortier LE, Ketelsen B, Ahmed S, Kelley Z, Hana A et al (2017) The significance of Trk receptors in pancreatic cancer. Tumour Biol. https://doi.org/10.1177/1010428317692256

    Article  PubMed  Google Scholar 

  13. Foster WG, Elias R, Faghih M, Dominguez MA, Elit L, Boutross-Tadross O (2009) Immunohistochemical localization of tyrosine receptor kinases A and B in endometriosis-associated ovarian cancer. Histopathology 54(7):907–912

    Article  PubMed  Google Scholar 

  14. Tanaka K, Mohri Y, Nishioka J, Kobayashi M, Ohi M, Miki C, Tonouchi H, Nobori T, Kusunoki M (2009) Neurotrophic receptor, tropomyosin-related kinase B as an independent prognostic marker in gastric cancer patients. J Surg Oncol 99(5):307–310

    Article  CAS  PubMed  Google Scholar 

  15. Mazouffre C, Geyl S, Perraud A, Blondy S, Jauberteau MO, Mathonnet M, Verdier M (2017) Dual inhibition of BDNF/TrkB and autophagy: a promising therapeutic approach for colorectal cancer. J Cell Mol Med 21(10):2610–2622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Okamura K, Harada T, Wang S, Ijichi K, Furuyama K, Koga T, Okamoto T, Takayama K, Yano T, Nakanishi Y (2012) Expression of TrkB and BDNF is associated with poor prognosis in non-small cell lung cancer. Lung Cancer 78(1):100–106

    Article  PubMed  Google Scholar 

  17. Tajbakhsh A, Mokhtari-Zaer A, Rezaee M, Afzaljavan F, Rivandi M, Hassanian SM, Ferns GA, Pasdar A, Avan A (2017) Therapeutic potentials of BDNF/TrkB in breast cancer; current status and perspectives. J Cell Biochem 118(9):2502–2515

    Article  CAS  PubMed  Google Scholar 

  18. Nakagawara A, Arima M, Azar CG, Scavarda NJ, Brodeur GM (1992) Inverse relationship between trk expression and N-myc amplification in human neuroblastomas. Can Res 52(5):1364–1368

    CAS  Google Scholar 

  19. Yamashiro DJ, Nakagawara A, Ikegaki N, Liu XG, Brodeur GM (1996) Expression of TrkC in favorable human neuroblastomas. Oncogene 12(1):37–41

    CAS  PubMed  Google Scholar 

  20. Scaruffi P, Cusano R, Dagnino M, Tonini GP (1999) Detection of DNA polymorphisms and point mutations of high-affinity nerve growth factor receptor (TrkA) in human neuroblastoma. Int J Oncol 14(5):935–938

    CAS  PubMed  Google Scholar 

  21. Rydén M, Sehgal R, Dominici C, Schilling FH, Ibáñez CF, Kogner P (1996) Expression of mRNA for the neurotrophin receptor trkC in neuroblastomas with favourable tumour stage and good prognosis. Br J Cancer 74(5):773–779

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rafiq S, Hackett CS, Brentjens RJ (2020) Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol 17(3):147–167

    Article  PubMed  Google Scholar 

  23. Branella GM, Spencer HT (2021) Natural receptor- and ligand-based chimeric antigen receptors: strategies using natural ligands and receptors for targeted cell killing. Cells. https://doi.org/10.3390/cells11010021

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ramírez-Chacón A, Betriu-Méndez S, Bartoló-Ibars A, González A, Martí M, Juan M (2022) Corrigendum: ligand-based CAR T-cell—different strategies to drive T-cells in future new treatments. Front Immunol 13:1078003

    Article  PubMed  PubMed Central  Google Scholar 

  25. Khotskaya YB, Holla VR, Farago AF, Mills Shaw KR, Meric-Bernstam F, Hong DS (2017) Targeting TRK family proteins in cancer. Pharmacol Ther 173:58–66

    Article  CAS  PubMed  Google Scholar 

  26. Au CW, Siu MK, Liao X, Wong ES, Ngan HY, Tam KF, Chan DC, Chan QK, Cheung AN (2009) Tyrosine kinase B receptor and BDNF expression in ovarian cancers: effect on cell migration, angiogenesis and clinical outcome. Cancer Lett 281(2):151–161

    Article  CAS  PubMed  Google Scholar 

  27. Sugiura D, Shimizu K, Maruhashi T, Okazaki IM, Okazaki T (2021) T-cell-intrinsic and -extrinsic regulation of PD-1 function. Int Immunol 33(12):693–698

    Article  CAS  PubMed  Google Scholar 

  28. Sun L, Gao F, Gao Z, Ao L, Li N, Ma S, Jia M, Li N, Lu P, Sun B et al (2021) Shed antigen-induced blocking effect on CAR-T cells targeting Glypican-3 in hepatocellular carcinoma. J Immuno Cancer. https://doi.org/10.1136/jitc-2020-001875

    Article  Google Scholar 

  29. Guo D, Hou X, Zhang H, Sun W, Zhu L, Liang J, Jiang X (2011) More expressions of BDNF and TrkB in multiple hepatocellular carcinoma and anti-BDNF or K252a induced apoptosis, supressed invasion of HepG2 and HCCLM3 cells. J Exp Clin Cancer Res 30(1):97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sclabas GM, Fujioka S, Schmidt C, Li Z, Frederick WA, Yang W, Yokoi K, Evans DB, Abbruzzese JL, Hess KR et al (2005) Overexpression of tropomysin-related kinase B in metastatic human pancreatic cancer cells. Clin Cancer Res 11(2 Pt 1):440–449

    Article  CAS  PubMed  Google Scholar 

  31. Heitzeneder S, Bosse KR, Zhu Z, Zhelev D, Majzner RG, Radosevich MT, Dhingra S, Sotillo E, Buongervino S, Pascual-Pasto G et al (2022) GPC2-CAR T cells tuned for low antigen density mediate potent activity against neuroblastoma without toxicity. Cancer Cell 40(1):53-69.e59

    Article  CAS  PubMed  Google Scholar 

  32. Nassar D, Blanpain C (2016) Cancer stem cells: basic concepts and therapeutic implications. Annu Rev Pathol 11:47–76

    Article  CAS  PubMed  Google Scholar 

  33. Yin B, Ma ZY, Zhou ZW, Gao WC, Du ZG, Zhao ZH, Li QQ (2015) The TrkB+ cancer stem cells contribute to post-chemotherapy recurrence of triple-negative breast cancers in an orthotopic mouse model. Oncogene 34(6):761–770

    Article  CAS  PubMed  Google Scholar 

  34. Kim MS, Lee WS, Jin W (2023) TrkB inhibition of DJ-1 degradation promotes the growth and maintenance of cancer stem cell characteristics in hepatocellular carcinoma. Cell Mol Life Sci 80(10):303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Noh KH, Kim BW, Song KH, Cho H, Lee YH, Kim JH, Chung JY, Kim JH, Hewitt SM, Seong SY et al (2012) Nanog signaling in cancer promotes stem-like phenotype and immune evasion. J Clin Investig 122(11):4077–4093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fan J, Yu Y, Yan L, Yuan Y, Sun B, Yang D, Liu N, Guo J, Zhang J, Zhao X (2023) GAS6-based CAR-T cells exhibit potent antitumor activity against pancreatic cancer. J Hematol Oncol 16(1):77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wei W, Ma H, Yang D, Sun B, Tang J, Zhu Y, Chen X, Huang X, Liu J, Hu Z et al (2023) SECTM1-based CAR-T cells enriched with CD7low/negative subsets exhibit efficacy in CD7-positive malignancies. Blood Adv. https://doi.org/10.1182/bloodadvances.2022008402

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sun B, Yang D, Dai H, Liu X, Jia R, Cui X, Li W, Cai C, Xu J, Zhao X (2019) Eradication of hepatocellular carcinoma by NKG2D-based CAR-T cells. Cancer Immunol Res 7(11):1813–1823

    Article  CAS  PubMed  Google Scholar 

  39. Yang D, Sun B, Dai H, Li W, Shi L, Zhang P, Li S, Zhao X (2019) T cells expressing NKG2D chimeric antigen receptors efficiently eliminate glioblastoma and cancer stem cells. J Immunother Cancer 7(1):171

    Article  PubMed  PubMed Central  Google Scholar 

  40. El-Nassan HB, Al-Qadhi MA (2023) Recent advances in the discovery of tropomyosin receptor kinases TRKs inhibitors: a mini review. Eur J Med Chem 258:115618

    Article  CAS  PubMed  Google Scholar 

  41. Douma S, Van Laar T, Zevenhoven J, Meuwissen R, Van Garderen E, Peeper DS (2004) Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature 430(7003):1034–1039

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Zhang S, Guo D, Luo W, Zhang Q, Zhang Y, Li C, Lu Y, Cui Z, Qiu X (2010) TrkB is highly expressed in NSCLC and mediates BDNF-induced the activation of Pyk2 signaling and the invasion of A549 cells. BMC Cancer 10:43

    Article  PubMed  PubMed Central  Google Scholar 

  43. Huang YT, Lai PC, Wu CC, Cheng CC, Chiu TH (2010) TrkB antibody elicits cytotoxicity and suppresses migration/invasion of transitional cell carcinoma cells. Int J Oncol 37(4):943–949

    CAS  PubMed  Google Scholar 

  44. Kawamura K, Kawamura N, Okamoto N, Manabe M (2013) Suppression of choriocarcinoma invasion and metastasis following blockade of BDNF/TrkB signaling. Cancer Med 2(6):849–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zou J, Zhang Z, Xu F, Cui S, Qi C, Luo J, Wang Z, Lu X, Tu Z, Ren X et al (2019) GZD2202, a novel TrkB inhibitor, suppresses BDNF-mediated proliferation and metastasis in neuroblastoma models. J Drug Target 27(4):442–450

    Article  CAS  PubMed  Google Scholar 

  46. Li Q, Han J, Yang Y, Chen Y (2022) PD-1/PD-L1 checkpoint inhibitors in advanced hepatocellular carcinoma immunotherapy. Front Immunol 13:1070961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vander Mause ER, Atanackovic D, Lim CS, Luetkens T (2022) Roadmap to affinity-tuned antibodies for enhanced chimeric antigen receptor T cell function and selectivity. Trends Biotechnol 40(7):875–890

    Article  CAS  PubMed  Google Scholar 

  48. Dobrowsky RT, Werner MH, Castellino AM, Chao MV, Hannun YA (1994) Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. Science 265(5178):1596–1599

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Cazorla M, Arrang JM, Prémont J (2011) Pharmacological characterization of six trkB antibodies reveals a novel class of functional agents for the study of the BDNF receptor. Br J Pharmacol 162(4):947–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yu S, Yi M, Qin S, Wu K (2019) Next generation chimeric antigen receptor T cells: safety strategies to overcome toxicity. Mol Cancer 18(1):125

    Article  PubMed  PubMed Central  Google Scholar 

  51. Qiang L, Yang Y, Ma YJ, Chen FH, Zhang LB, Liu W, Qi Q, Lu N, Tao L, Wang XT et al (2009) Isolation and characterization of cancer stem like cells in human glioblastoma cell lines. Cancer Lett 279(1):13–21

    Article  CAS  PubMed  Google Scholar 

  52. Yu SC, Ping YF, Yi L, Zhou ZH, Chen JH, Yao XH, Gao L, Wang JM, Bian XW (2008) Isolation and characterization of cancer stem cells from a human glioblastoma cell line U87. Cancer Lett 265(1):124–134

    Article  CAS  PubMed  Google Scholar 

  53. Li S, Dai Z, Yang D, Li W, Dai H, Sun B, Liu X, Xie X, Xu R, Zhao X (2019) Targeting β2 subunit of Na(+)/K(+)-ATPase induces glioblastoma cell apoptosis through elevation of intracellular Ca(2). Am J Cancer Res 9(6):1293–1308

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge for the technical assistance of Core Facility of West China Hospital (Li Chai, Yi Li and Xing Xu), Histology and Imaging Platform, Core Facility of West China Hospital (Yaping Wu). Manuscript editor Julian Heng (Remotely Consulting, Australia) provided professional English-language editing of this article (Manuscript Certificate No. 0Vb8Nn5I).

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 82103107 to B Sun), National Natural Science Foundation of China (Grant No. 82172701 to X Zhao), and 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University (Grant No. ZYYC20002 to X Zhao).

Author information

Authors and Affiliations

Authors

Contributions

DL and JT have contributed equally to this work. All authors contributed to the conception and design of this study. The experiments were carried out by DL and JT. JT, DL, BS, and DY wrote the original article. SH, HM, YY, and WW analyzed the data. HC and XZ critically revised the article. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Haiyang Chen or Xudong Zhao.

Ethics declarations

Competing interests

The authors declare no conflicts of interest in this work.

Ethical approval

Animal experiments in this study were approved by the Animal Ethics Committee of West China Hospital, Sichuan University (ID: 20211492A).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2576 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, D., Tang, J., Sun, B. et al. Novel CAR-T cells targeting TRKB for the treatment of solid cancer. Apoptosis (2024). https://doi.org/10.1007/s10495-024-01936-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10495-024-01936-7

Keywords

Navigation