Skip to main content

Advertisement

Log in

Comprehensive analysis of the function of helicobacter-associated ferroptosis gene YWHAE in gastric cancer through multi-omics integration, molecular docking, and machine learning

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Gastric cancer is strongly associated with Helicobacter pylori (H. pylori) infection. However, the molecular mechanisms underlying the development of gastric cancer in the context of H. pylori infection, particularly in relation to ferroptosis, remain poorly understood. In this study, we investigated the role of the Helicobacter-associated ferroptosis gene YWHAE in gastric cancer. We analyzed multi-omics data, performed molecular docking, and employed machine learning to comprehensively evaluate the expression, function, and potential implications in gastric cancer, including its influence on drug sensitivity, mutation, immune microenvironment, immunotherapy, and prognosis. Our findings demonstrated that the YWHAE gene exhibits high expression in both H. pylori-associated gastritis and gastric cancer. Pan-cancer analysis revealed elevated expression of YWHAE in several cancer types compared to normal tissues. We also examined the methylation, single nucleotide variations (SNVs), and copy number variations (CNVs) associated with YWHAE. Single-cell analysis indicated that the YWHAE gene is expressed in various cell types, with its expression level potentially influenced by H. pylori infection. Functionally, we observed a positive correlation between YWHAE gene expression and ferroptosis in gastric cancer and associated with multiple cancer-related signaling pathways, including MAPK, NF-κB, and PI3K. Furthermore, we predicted five small molecule compounds that show promise for treating gastric cancer patients and screened five drugs with the highest correlation with YWHAE and validated them by molecular docking. Additionally, significant differences were observed in various immune cell types and immunotherapeutic response between the high and low YWHAE gene expression groups. Moreover, we found a positive correlation between YWHAE gene expression and the tumour mutation burden (TMB). By applying 10 machine learning algorithms and 101 integration combinations, we developed a prognostic model for YWHAE-related genes. Finally, qRT-PCR and immunohistochemistry (IHC) consistently demonstrated the upregulation of YWHAE in gastric cancer. In conclusion, we conducted a comprehensive analysis of YWHAE gene in gastric cancer. Our findings provided novel insights into the role of YWHAE as a gene associated with H. pylori infection and ferroptosis in gastric cancer and expanded our understanding of the molecular mechanisms underlying gastric carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets of this article were generated from the TCGA database, GEO database and previous studies.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Moss SF (2017) The clinical evidence linking Helicobacter pylori to gastric cancer. Cell Mol Gastroenterol Hepatol 3(2):183–191. https://doi.org/10.1016/j.jcmgh.2016.12.001

    Article  PubMed  Google Scholar 

  3. Lei G, Zhuang L, Gan B (2022) Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer 22(7):381–396. https://doi.org/10.1038/s41568-022-00459-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stockwell BR (2022) Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 185(14):2401–2421. https://doi.org/10.1016/j.cell.2022.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang H, Liu M, Zeng X, Zheng Y, Wang Y, Zhou Y (2022) Cell death affecting the progression of gastric cancer. Cell Death Discov 8(1):377. https://doi.org/10.1038/s41420-022-01161-8

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sun S, Wong EW, Li MW, Lee WM, Cheng CY (2009) 14-3-3 and its binding partners are regulators of protein–protein interactions during spermatogenesis. J Endocrinol 202(3):327–336. https://doi.org/10.1677/joe-09-0041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vučković AM, Bosello Travain V, Bordin L, Cozza G, Miotto G, Rossetto M, Toppo S, Venerando R, Zaccarin M, Maiorino M, Ursini F, Roveri A (2020) Inactivation of the glutathione peroxidase GPx4 by the ferroptosis-inducing molecule RSL3 requires the adaptor protein 14-3-3ε. FEBS Lett 594(4):611–624. https://doi.org/10.1002/1873-3468.13631

    Article  CAS  PubMed  Google Scholar 

  8. Denommé-Pichon AS, Collins SC, Bruel AL, Mikhaleva A, Wagner C, Vancollie VE, Thomas Q, Chevarin M, Weber M, Prada CE, Overs A, Palomares-Bralo M, Santos-Simarro F, Pacio-Míguez M, Busa T, Legius E, Bacino CA, Rosenfeld JA, Le Guyader G, Egloff M, Le Guillou X, Mencarelli MA, Renieri A, Grosso S, Levy J, Dozières B, Desguerre I, Vitobello A, Duffourd Y, Lelliott CJ, Thauvin-Robinet C, Philippe C, Faivre L, Yalcin B (2023) YWHAE loss of function causes a rare neurodevelopmental disease with brain abnormalities in human and mouse. Genet Med 25(7):100835. https://doi.org/10.1016/j.gim.2023.100835

    Article  CAS  PubMed  Google Scholar 

  9. Li X, Wang C, Wang S, Hu Y, Jin S, Liu O, Gou R, Nie X, Liu J, Lin B (2021) YWHAE as an HE4 interacting protein can influence the malignant behaviour of ovarian cancer by regulating the PI3K/AKT and MAPK pathways. Cancer Cell Int 21(1):302. https://doi.org/10.1186/s12935-021-01989-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Park CH, Hong C, Lee AR, Sung J, Hwang TH (2022) Multi-omics reveals microbiome, host gene expression, and immune landscape in gastric carcinogenesis. Iscience 25(3):103956. https://doi.org/10.1016/j.isci.2022.103956

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Zhou N, Yuan X, Du Q, Zhang Z, Shi X, Bao J, Ning Y, Peng L (2023) FerrDb V2: update of the manually curated database of ferroptosis regulators and ferroptosis-disease associations. Nucleic Acids Res 51(D1):D571-d582. https://doi.org/10.1093/nar/gkac935

    Article  CAS  PubMed  Google Scholar 

  12. Tang Z, Kang B, Li C, Chen T, Zhang Z (2019) GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res 47(W1):W556-w560. https://doi.org/10.1093/nar/gkz430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, Li B, Liu XS (2020) TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res 48(W1):W509-W514. https://doi.org/10.1093/nar/gkaa407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Han Y, Wang Y, Dong X, Sun D, Liu Z, Yue J, Wang H, Li T, Wang C (2023) TISCH2: expanded datasets and new tools for single-cell transcriptome analyses of the tumor microenvironment. Nucleic Acids Res 51(D1):D1425-d1431. https://doi.org/10.1093/nar/gkac959

    Article  PubMed  Google Scholar 

  15. Liu CJ, Hu FF, Xie GY, Miao YR, Li XW, Zeng Y, Guo AY (2023) GSCA: an integrated platform for gene set cancer analysis at genomic, pharmacogenomic and immunogenomic levels. Brief Bioinform 24(1):bbac558. https://doi.org/10.1093/bib/bbac558

    Article  CAS  PubMed  Google Scholar 

  16. Schubert M, Klinger B, Klünemann M, Sieber A, Uhlitz F, Sauer S, Garnett MJ, Blüthgen N, Saez-Rodriguez J (2018) Perturbation-response genes reveal signaling footprints in cancer gene expression. Nat Commun 9(1):20. https://doi.org/10.1038/s41467-017-02391-6

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, Bindal N, Beare D, Smith JA, Thompson IR, Ramaswamy S, Futreal PA, Haber DA, Stratton MR, Benes C, McDermott U, Garnett MJ (2013) Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 41:D955-961. https://doi.org/10.1093/nar/gks1111

    Article  CAS  PubMed  Google Scholar 

  18. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12(5):453–457. https://doi.org/10.1038/nmeth.3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, Selves J, Laurent-Puig P, Sautès-Fridman C, Fridman WH, de Reyniès A (2016) Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol 17(1):218. https://doi.org/10.1186/s13059-016-1070-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18(1):220. https://doi.org/10.1186/s13059-017-1349-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl H, Krogsdam A, Loncova Z, Posch W, Wilflingseder D, Sopper S, Ijsselsteijn M, Brouwer TP, Johnson D, Xu Y, Wang Y, Sanders ME, Estrada MV, Ericsson-Gonzalez P, Charoentong P, Balko J, de Miranda N, Trajanoski Z (2019) Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med 11(1):34. https://doi.org/10.1186/s13073-019-0638-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, Treviño V, Shen H, Laird PW, Levine DA, Carter SL, Getz G, Stemke-Hale K, Mills GB, Verhaak RG (2013) Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 4:2612. https://doi.org/10.1038/ncomms3612

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, Li Z, Traugh N, Bu X, Li B, Liu J, Freeman GJ, Brown MA, Wucherpfennig KW, Liu XS (2018) Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med 24(10):1550–1558. https://doi.org/10.1038/s41591-018-0136-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, Kadel EE, Koeppen III, Astarita H, Cubas JL, Jhunjhunwala R, Banchereau S, Yang R, Guan Y, Chalouni Y, Ziai C, Şenbabaoğlu J, Santoro Y, Sheinson S, Hung D, Giltnane J, Pierce JM, Mesh AA, Lianoglou K, Riegler S, Carano J, Eriksson RAD, Höglund P, Somarriba M, Halligan L, van der Heijden DL, Loriot MS, Rosenberg Y, Fong JE, Mellman L, Chen I, Green DS, Derleth M, Fine C, Hegde GD, Bourgon PS, Powles R (2018) TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554(7693):544–548. https://doi.org/10.1038/nature25501

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Liu Z, Liu L, Weng S, Guo C, Dang Q, Xu H, Wang L, Lu T, Zhang Y, Sun Z, Han X (2022) Machine learning-based integration develops an immune-derived lncRNA signature for improving outcomes in colorectal cancer. Nat Commun 13(1):816. https://doi.org/10.1038/s41467-022-28421-6

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Pinzi L, Rastelli G (2019) Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci 20(18):4331. https://doi.org/10.3390/ijms20184331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Malfertheiner P, Camargo MC, El-Omar E, Liou JM, Peek R, Schulz C, Smith SI, Suerbaum S (2023) Helicobacter pylori infection. Nat Rev Dis Primers 9(1):19. https://doi.org/10.1038/s41572-023-00431-8

    Article  PubMed  Google Scholar 

  28. Wang L, Wang H (2023) The putative role of ferroptosis in gastric cancer: a review. Eur J Cancer Prev. https://doi.org/10.1097/cej.0000000000000817

    Article  PubMed  PubMed Central  Google Scholar 

  29. Stevers LM, Sijbesma E, Botta M, MacKintosh C, Obsil T, Landrieu I, Cau Y, Wilson AJ, Karawajczyk A, Eickhoff J, Davis J, Hann M, O’Mahony G, Doveston RG, Brunsveld L, Ottmann C (2018) Modulators of 14-3-3 protein–protein interactions. J Med Chem 61(9):3755–3778. https://doi.org/10.1021/acs.jmedchem.7b00574

    Article  CAS  PubMed  Google Scholar 

  30. Zhang X, Zeng B, Wen C, Zheng S, Chen H, She F (2018) YWHAE is a novel interaction partner of Helicobacter pylori CagA. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnx231

    Article  PubMed  Google Scholar 

  31. Guan WL, He Y, Xu RH (2023) Gastric cancer treatment: recent progress and future perspectives. J Hematol Oncol 16(1):57. https://doi.org/10.1186/s13045-023-01451-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Khan S, Kellish P, Connis N, Thummuri D, Wiegand J, Zhang P, Zhang X, Budamagunta V, Hua N, Yang Y, De U, Jin L, Zhang W, Zheng G, Hromas R, Hann C, Zajac-Kaye M, Kaye FJ, Zhou D (2023) Co-targeting BCL-X(L) and MCL-1 with DT2216 and AZD8055 synergistically inhibit small-cell lung cancer growth without causing on-target toxicities in mice. Cell Death Discov 9(1):1. https://doi.org/10.1038/s41420-022-01296-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jeon YW, Kim OH, Shin JS, Hong HE, Kim CH, Kim SJ (2022) Potentiation of the anticancer effects by combining docetaxel with Ku-0063794 against triple-negative breast cancer cells. Cancer Res Treat 54(1):157–173. https://doi.org/10.4143/crt.2020.1063

    Article  CAS  PubMed  Google Scholar 

  34. Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O, Loewith R, Stokoe D, Balla A, Toth B, Balla T, Weiss WA, Williams RL, Shokat KM (2006) A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 125(4):733–747. https://doi.org/10.1016/j.cell.2006.03.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Novotná E, Büküm N, Hofman J, Flaxová M, Kouklíková E, Louvarová D, Wsól V (2018) Roscovitine and purvalanol a effectively reverse anthracycline resistance mediated by the activity of aldo-keto reductase 1C3 (AKR1C3): a promising therapeutic target for cancer treatment. Biochem Pharmacol 156:22–31. https://doi.org/10.1016/j.bcp.2018.08.001

    Article  CAS  PubMed  Google Scholar 

  36. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322. https://doi.org/10.1016/j.ccr.2012.02.022

    Article  CAS  PubMed  Google Scholar 

  37. Fu W, Hu W, Yi YS, Hettinghouse A, Sun G, Bi Y, He W, Zhang L, Gao G, Liu J, Toyo-Oka K, Xiao G, Solit DB, Loke P, Liu CJ (2021) TNFR2/14-3-3ε signaling complex instructs macrophage plasticity in inflammation and autoimmunity. J Clin Invest 131(16):e144016. https://doi.org/10.1172/jci144016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Millerand M, Sudre L, Nefla M, Pène F, Rousseau C, Pons A, Ravat A, André-Leroux G, Akira S, Satoh T, Berenbaum F, Jacques C (2020) Activation of innate immunity by 14-3-3 ε, a new potential alarmin in osteoarthritis. Osteoarthr Cartil 28(5):646–657. https://doi.org/10.1016/j.joca.2020.03.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the Science and Technology Projects of Jiangxi Province and the TCGA database.

Funding

This research was funded by the National Natural Science Foundation of China (Grant Nos.82270593, 82200628).

Author information

Authors and Affiliations

Authors

Contributions

YX designed the study. DL performed data analysis, graphing and writing. JP and JX helped modify the article and supervise the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yong Xie.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

The study was approved by The First Affiliated Hospital of Nanchang University Ethics Committee on Medical Research.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Peng, J., Xie, J. et al. Comprehensive analysis of the function of helicobacter-associated ferroptosis gene YWHAE in gastric cancer through multi-omics integration, molecular docking, and machine learning. Apoptosis 29, 439–456 (2024). https://doi.org/10.1007/s10495-023-01916-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01916-3

Keywords

Navigation