Skip to main content

Advertisement

Log in

The interplay of miRNAs and ferroptosis in diseases related to iron overload

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Ferroptosis has been conceptualized as a novel cell death modality distinct from apoptosis, necroptosis, pyroptosis and autophagic cell death. The sensitivity of cellular ferroptosis is regulated at multiple layers, including polyunsaturated fatty acid metabolism, glutathione-GPX4 axis, iron homeostasis, mitochondria and other parallel pathways. In addition, microRNAs (miRNAs) have been implicated in modulating ferroptosis susceptibility through targeting different players involved in the execution or avoidance of ferroptosis. A growing body of evidence pinpoints the deregulation of miRNA-regulated ferroptosis as a critical factor in the development and progression of various pathophysiological conditions related to iron overload. The revelation of mechanisms of miRNA-dependent ferroptosis provides novel insights into the etiology of diseases and offers opportunities for therapeutic intervention. In this review, we discuss the interplay of emerging miRNA regulators and ferroptosis players under different pathological conditions, such as cancers, ischemia/reperfusion, neurodegenerative diseases, acute kidney injury and cardiomyopathy. We emphasize on the relevance of miRNA-regulated ferroptosis to disease progression and the targetability for therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Dat availability

Not applicable.

Abbreviations

α-KG:

α-Ketoglutarate

3' UTR:

3' Untranslated region

AA:

Arachidonic acid

ACC:

Acetyl-CoA carboxylase

ACSL4:

Acyl-CoA synthetase 4

AD:

Alzheimer's disease

AdA:

Adrenic acid

AIS:

Acute ischemic stroke

AKI:

Acute kidney injury

ALOX15:

Arachidonate lipoxygenase 15

ALS:

Amyotrophic lateral sclerosis

AMI:

Acute myocardial infarction

AMPK:

AMP-activated protein kinase

AURKA:

Aurora kinase A

BH4:

Tetrahydrobiopterin

BMVECs:

Brain microvascular endothelial cells

CAFs:

Cancer-associated fibroblasts

CC:

Cervical cancer

CCND2:

Cyclin D2

ceRNAs:

Competitive endogenous RNA

circRNAs:

Circular RNAs

CO:

Carbon monoxide

CoQ10:

Coenzyme Q10

CRC:

Colorectal cancer

CRR:

Clinical relevant radioresistant

CISDs:

CDGSH iron sulfur domain

Cys:

Cystine

DbCM:

Diabetic cardiomyopathy

DHODH:

Dihydroorotate dehydrogenase

DHFR:

Dihydrofolate reductase

DGF:

Delayed graft function

DMT1:

Divalent metal ion transporter 1

ERK:

Extracellular Signal-Regulated Kinases

ETC:

Electron transport chain

FPN (also called SLC40A1):

Iron transport protein ferroportin 1

FSP1 (also called AIFM2):

Ferroptosis suppressor protein 1

FTH:

Ferritin heavy chain

FTL:

Ferritin light chain

GBM:

Glioblastoma

GC:

Gastric cancer

GCH1:

GTP cyclohydrolase 1

Gln:

Glutamine

GLS-1:

Glutaminase-1

Glu:

Glutamate

GOT1:

Glutamate oxaloacetate transaminase 1

GPCR:

G protein-coupled receptor

GPX4:

Glutathione peroxidase 4

GSDM:

Gasdermin

GSH:

Glutathione

HO-1:

Heme oxygenase 1

ICH:

Intracerebral hemorrhage

iPLA2β:

Independent phospholipase A2β

IPP:

Isopentenyl pyrophosphate

I/R:

Ischemia reperfusion

IREB2 (also called IRP2):

Iron response element binding protein 2

IREs:

Iron response elements

LA:

Linoleic acid

lncRNAs:

Long non-coding RNAs

LPCAT3:

Lysophosphatidylcholine acyltransferase 3

LUAD:

Lung adenocarcinoma

miRNAs:

MicroRNAs

MM:

Multiple myeloma

NRF2:

NFE2 like bZIP transcription factor 2

NSCLC:

Non-small cell lung carcinoma

PCa:

Prostate cancer

PD:

Parkinson's disease

PE:

Phosphatidylethanolamine

PLOOH:

Phospholipid hydroperoxide

pri-miRNAs:

Primary miRNAs

PUFAs:

Polyunsaturated fatty acids

RBMS1,RNA:

Binding motif single-stranded interacting protein 1

RCC:

Renal cell carcinoma

REST:

Repressor element-1 silencing transcription factor

RISC:

RNA-induced silencing complex

ROS:

Reactive oxygen species

RTA:

Radical-trapping antioxidant

SCA:

Spinocerebellar ataxia

SCI:

Spinal cord injury

SHIP1:

Phosphatidylinositol-3,5-bisphosphate 5-phosphatase 1

SLC3A2:

Solute carrier family member 3A2

SLC7A11:

Solute carrier family member 7A11

STEAP3:

Six-transmembrane epithelial antigen 3

TCA:

Tricarboxylic acid

TF:

Transferrin

TFR1:

Transferrin receptor 1

TFRC:

Transferrin receptor

TME:

Tumor microenvironment

TNF:

Tumour necrosis factor

UTR:

Untranslated region

ZIP8/14:

Zinc transporter 8/14

References

  1. Galluzzi L, Vitale I, Aaronson SA et al (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25(3):486–541. https://doi.org/10.1038/s41418-017-0012-4

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cheng X, Ferrell JE (2018) Apoptosis propagates through the cytoplasm as trigger waves. Science 361(6402):607–612. https://doi.org/10.1126/science.aah4065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Weinlich R, Oberst A, Beere HM et al (2017) Necroptosis in development, inflammation and disease. Nat Rev Mol Cell Biol 18(2):127–136. https://doi.org/10.1038/nrm.2016.149

    Article  CAS  PubMed  Google Scholar 

  4. Wei X, Xie F, Zhou X et al (2022) Role of pyroptosis in inflammation and cancer. Cell Mol Immunol 19(9):971–992. https://doi.org/10.1038/s41423-022-00905-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lm S (2021) Autophagic cell death during development—ancient and mysterious. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2021.656370

    Article  Google Scholar 

  6. Kist M, Vucic D (2021) Cell death pathways: intricate connections and disease implications. EMBO J 40(5):e106700. https://doi.org/10.15252/embj.2020106700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bertheloot D, Latz E, Franklin BS (2021) Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol 18(5):1106–1121. https://doi.org/10.1038/s41423-020-00630-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stockwell BR, Friedmann Angeli JP, Bayir H et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171(2):273–285. https://doi.org/10.1016/j.cell.2017.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dixon SJ, Lemberg KM, Lamprecht MR et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martin-Sanchez D, Fontecha-Barriuso M, Martinez-Moreno JM et al (2020) Ferroptosis and kidney disease. Nefrologia 40(4):384–394. https://doi.org/10.1016/j.nefro.2020.03.005

    Article  PubMed  Google Scholar 

  11. Gordan R, Wongjaikam S, Gwathmey JK et al (2018) Involvement of cytosolic and mitochondrial iron in iron overload cardiomyopathy: an update. Heart Fail Rev 23(5):801–816. https://doi.org/10.1007/s10741-018-9700-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Granata S, Votrico V, Spadaccino F et al (2022) Oxidative stress and ischemia/reperfusion injury in kidney transplantation: focus on ferroptosis, mitophagy and new antioxidants. Antioxid Basel Switz 11(4):769. https://doi.org/10.3390/antiox11040769

    Article  CAS  Google Scholar 

  13. Masaldan S, Bush AI, Devos D et al (2019) Striking while the iron is hot: iron metabolism and ferroptosis in neurodegeneration. Free Radic Biol Med 133:221–233. https://doi.org/10.1016/j.freeradbiomed.2018.09.033

    Article  CAS  PubMed  Google Scholar 

  14. Zeng W, Long X, Liu P-S et al (2023) The interplay of oncogenic signaling, oxidative stress and ferroptosis in cancer. Int J Cancer. https://doi.org/10.1002/ijc.34486

    Article  PubMed  Google Scholar 

  15. Lu TX, Rothenberg ME (2018) MicroRNA. J Allergy Clin Immunol 141(4):1202–1207. https://doi.org/10.1016/j.jaci.2017.08.034

    Article  CAS  PubMed  Google Scholar 

  16. Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205. https://doi.org/10.1146/annurev.cellbio.23.090506.123406

    Article  CAS  PubMed  Google Scholar 

  17. Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA N Y N 10(12):1957–1966. https://doi.org/10.1261/rna.7135204

    Article  CAS  Google Scholar 

  18. Han J, Pedersen JS, Kwon SC et al (2009) Posttranscriptional crossregulation between Drosha and DGCR8. Cell 136(1):75–84. https://doi.org/10.1016/j.cell.2008.10.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chendrimada TP, Gregory RI, Kumaraswamy E et al (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436(7051):740–744. https://doi.org/10.1038/nature03868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gregory RI, Chendrimada TP, Cooch N et al (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123(4):631–640. https://doi.org/10.1016/j.cell.2005.10.022

    Article  CAS  PubMed  Google Scholar 

  21. Xie X, Lu J, Kulbokas EJ et al (2005) Systematic discovery of regulatory motifs in human promoters and 3’ UTRs by comparison of several mammals. Nature 434(7031):338–345. https://doi.org/10.1038/nature03441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16(3):203–222. https://doi.org/10.1038/nrd.2016.246

    Article  CAS  PubMed  Google Scholar 

  23. Fuhrmann DC, Brüne B (2022) A graphical journey through iron metabolism, microRNAs, and hypoxia in ferroptosis. Redox Biol 54:102365. https://doi.org/10.1016/j.redox.2022.102365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li J, Cao F, Yin H-L et al (2020) Ferroptosis: past, present and future. Cell Death Dis 11(2):88. https://doi.org/10.1038/s41419-020-2298-2

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dolma S, Lessnick SL, Hahn WC et al (2003) Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3(3):285–296. https://doi.org/10.1016/s1535-6108(03)00050-3

    Article  CAS  PubMed  Google Scholar 

  26. Yagoda N, von Rechenberg M, Zaganjor E et al (2007) RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447(7146):864–868. https://doi.org/10.1038/nature05859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Daher B, Vučetić M, Pouysségur J (2020) Cysteine depletion, a key action to challenge cancer cells to ferroptotic cell death. Front Oncol 10:723. https://doi.org/10.3389/fonc.2020.00723

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stockwell BR (2022) Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 185(14):2401–2421. https://doi.org/10.1016/j.cell.2022.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22(4):266–282. https://doi.org/10.1038/s41580-020-00324-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Feng H, Stockwell BR (2018) Unsolved mysteries: how does lipid peroxidation cause ferroptosis? PLoS Biol 16(5):e2006203. https://doi.org/10.1371/journal.pbio.2006203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. von Krusenstiern AN, Robson RN, Qian N et al (2023) Identification of essential sites of lipid peroxidation in ferroptosis. Nat Chem Biol. https://doi.org/10.1038/s41589-022-01249-3

    Article  Google Scholar 

  32. Conrad M, Pratt DA (2019) The chemical basis of ferroptosis. Nat Chem Biol 15(12):1137–1147. https://doi.org/10.1038/s41589-019-0408-1

    Article  CAS  PubMed  Google Scholar 

  33. Campbell NK, Fitzgerald HK, Dunne A (2021) Regulation of inflammation by the antioxidant haem oxygenase 1. Nat Rev Immunol 21(7):411–425. https://doi.org/10.1038/s41577-020-00491-x

    Article  CAS  PubMed  Google Scholar 

  34. Consoli V, Sorrenti V, Grosso S et al (2021) Heme oxygenase-1 signaling and redox homeostasis in physiopathological conditions. Biomolecules 11(4):589. https://doi.org/10.3390/biom11040589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Adedoyin O, Boddu R, Traylor A et al (2018) Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells. Am J Physiol Renal Physiol 314(5):F702–F714. https://doi.org/10.1152/ajprenal.00044.2017

    Article  CAS  PubMed  Google Scholar 

  36. Yuan X, Li L, Zhang Y et al (2023) Heme oxygenase 1 alleviates nonalcoholic steatohepatitis by suppressing hepatic ferroptosis. Lipids Health Dis 22(1):99. https://doi.org/10.1186/s12944-023-01855-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ma C, Wu X, Zhang X et al (2022) Heme oxygenase-1 modulates ferroptosis by fine-tuning levels of intracellular iron and reactive oxygen species of macrophages in response to Bacillus Calmette-Guerin infection. Front Cell Infect Microbiol 12:1004148. https://doi.org/10.3389/fcimb.2022.1004148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li D, Li Y (2020) The interaction between ferroptosis and lipid metabolism in cancer. Signal Transduct Target Ther 5(1):108. https://doi.org/10.1038/s41392-020-00216-5

    Article  PubMed  PubMed Central  Google Scholar 

  39. Singh AB, Liu J (2017) Identification of hepatic lysophosphatidylcholine acyltransferase 3 as a novel target gene regulated by peroxisome proliferator-activated receptor δ. J Biol Chem 292(3):884–897. https://doi.org/10.1074/jbc.M116.743575

    Article  CAS  PubMed  Google Scholar 

  40. Reed A, Ichu T-A, Milosevich N et al (2022) LPCAT3 inhibitors remodel the polyunsaturated phospholipid content of human cells and protect from ferroptosis. ACS Chem Biol 17(6):1607–1618. https://doi.org/10.1021/acschembio.2c00317

    Article  CAS  PubMed  Google Scholar 

  41. Doll S, Proneth B, Tyurina YY et al (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13(1):91–98. https://doi.org/10.1038/nchembio.2239

    Article  CAS  PubMed  Google Scholar 

  42. Stockwell BR, Friedmann Angeli JP, Bayir H et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171(2):273–285. https://doi.org/10.1016/j.cell.2017.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee J-Y, Kim WK, Bae K-H et al (2021) Lipid metabolism and ferroptosis. Biology 10(3):184. https://doi.org/10.3390/biology10030184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin Z, Liu J, Kang R et al (2021) Lipid metabolism in ferroptosis. Adv Biol 5(8):e2100396. https://doi.org/10.1002/adbi.202100396

    Article  CAS  Google Scholar 

  45. Agmon E, Solon J, Bassereau P et al (2018) Modeling the effects of lipid peroxidation during ferroptosis on membrane properties. Sci Rep 8(1):5155. https://doi.org/10.1038/s41598-018-23408-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen X, Li J, Kang R et al (2020) Ferroptosis: machinery and regulation. Autophagy 17:2054–2081. https://doi.org/10.1080/15548627.2020.1810918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liao D (2022) Ferroptosis. In: Mechanisms of cell death and opportunities for therapeutic development. Elsevier, Amsterdam, pp 261–277. https://doi.org/10.1016/B978-0-12-814208-0.00005-1

  48. Su Y, Zhao B, Zhou L et al (2020) Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett 483:127–136. https://doi.org/10.1016/j.canlet.2020.02.015

    Article  CAS  PubMed  Google Scholar 

  49. Koppula P, Zhuang L, Gan B (2021) Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell 12(8):599–620. https://doi.org/10.1007/s13238-020-00789-5

    Article  CAS  PubMed  Google Scholar 

  50. Liu T, Jiang L, Tavana O et al (2019) The deubiquitylase OTUB1 mediates ferroptosis via stabilization of SLC7A11. Cancer Res 79(8):1913–1924. https://doi.org/10.1158/0008-5472.CAN-18-3037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang WS, SriRamaratnam R, Welsch ME et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1–2):317–331. https://doi.org/10.1016/j.cell.2013.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ursini F, Maiorino M (2020) Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radic Biol Med 152:175–185. https://doi.org/10.1016/j.freeradbiomed.2020.02.027

    Article  CAS  PubMed  Google Scholar 

  53. Friedmann Angeli JP, Schneider M, Proneth B et al (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 16(12):1180–1191. https://doi.org/10.1038/ncb3064

    Article  CAS  PubMed  Google Scholar 

  54. Zheng J, Conrad M (2020) The metabolic underpinnings of ferroptosis. Cell Metab 32(6):920–937. https://doi.org/10.1016/j.cmet.2020.10.011

    Article  CAS  PubMed  Google Scholar 

  55. Shimada K, Skouta R, Kaplan A et al (2016) Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol 12(7):497–503. https://doi.org/10.1038/nchembio.2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang WS, Kim KJ, Gaschler MM et al (2016) Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA 113(34):E4966-4975. https://doi.org/10.1073/pnas.1603244113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. El Hout M, Dos Santos L, Hamaï A et al (2018) A promising new approach to cancer therapy: targeting iron metabolism in cancer stem cells. Semin Cancer Biol 53:125–138. https://doi.org/10.1016/j.semcancer.2018.07.009

    Article  CAS  PubMed  Google Scholar 

  58. Wallace DF (2016) The regulation of iron absorption and homeostasis. Clin Biochem Rev 37(2):51–62

    PubMed  PubMed Central  Google Scholar 

  59. Fang Y, Chen X, Tan Q et al (2021) Inhibiting ferroptosis through disrupting the NCOA4-FTH1 interaction: a new mechanism of action. ACS Cent Sci 7(6):980–989. https://doi.org/10.1021/acscentsci.0c01592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shen Y, Li X, Dong D et al (2018) Transferrin receptor 1 in cancer: a new sight for cancer therapy. Am J Cancer Res 8(6):916–931

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Qin X, Zhang J, Wang B et al (2021) Ferritinophagy is involved in the zinc oxide nanoparticles-induced ferroptosis of vascular endothelial cells. Autophagy 17(12):4266–4285. https://doi.org/10.1080/15548627.2021.1911016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mumbauer S, Pascual J, Kolotuev I et al (2019) Ferritin heavy chain protects the developing wing from reactive oxygen species and ferroptosis. PLoS Genet 15(9):e1008396. https://doi.org/10.1371/journal.pgen.1008396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bogdan AR, Miyazawa M, Hashimoto K et al (2016) Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem Sci 41(3):274–286. https://doi.org/10.1016/j.tibs.2015.11.012

    Article  CAS  PubMed  Google Scholar 

  64. Feng-Jiao L, Long H-Z, Zhou Z-W et al (2022) Relationship between miRNA and ferroptosis in tumors. Front Pharmacol 13:7062. https://doi.org/10.3389/fphar.2022.977062

    Article  CAS  Google Scholar 

  65. Wang C-Y, Jenkitkasemwong S, Duarte S et al (2012) ZIP8 is an iron and zinc transporter whose cell-surface expression is up-regulated by cellular iron loading. J Biol Chem 287(41):34032–34043. https://doi.org/10.1074/jbc.M112.367284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bao W-D, Pang P, Zhou X-T et al (2021) Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease. Cell Death Differ 28(5):1548–1562. https://doi.org/10.1038/s41418-020-00685-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Meyron-Holtz EG, Ghosh MC, Iwai K et al (2004) Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J 23(2):386–395. https://doi.org/10.1038/sj.emboj.7600041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hentze MW, Muckenthaler MU, Galy B et al (2010) Two to tango: regulation of mammalian iron metabolism. Cell 142(1):24–38. https://doi.org/10.1016/j.cell.2010.06.028

    Article  CAS  PubMed  Google Scholar 

  69. Bonadonna M, Altamura S, Tybl E et al (2022) Iron regulatory protein (IRP)-mediated iron homeostasis is critical for neutrophil development and differentiation in the bone marrow. Sci Adv 8(40):4469. https://doi.org/10.1126/sciadv.abq4469

    Article  CAS  Google Scholar 

  70. Li Y, Jin C, Shen M et al (2020) Iron regulatory protein 2 is required for artemether-mediated anti-hepatic fibrosis through ferroptosis pathway. Free Radic Biol Med 160:845–859. https://doi.org/10.1016/j.freeradbiomed.2020.09.008

    Article  CAS  PubMed  Google Scholar 

  71. Terzi EM, Sviderskiy VO, Alvarez SW et al (2021) Iron-sulfur cluster deficiency can be sensed by IRP2 and regulates iron homeostasis and sensitivity to ferroptosis independent of IRP1 and FBXL5. Sci Adv 7(22):eabg4302. https://doi.org/10.1126/sciadv.abg4302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang H, Liu C, Zhao Y et al (2020) Mitochondria regulation in ferroptosis. Eur J Cell Biol 99(1):151058. https://doi.org/10.1016/j.ejcb.2019.151058

    Article  CAS  PubMed  Google Scholar 

  73. Hassannia B, Vandenabeele P, Vanden BT (2019) Targeting ferroptosis to iron out cancer. Cancer Cell 35(6):830–849. https://doi.org/10.1016/j.ccell.2019.04.002

    Article  CAS  PubMed  Google Scholar 

  74. Battaglia AM, Chirillo R, Aversa I et al (2020) Ferroptosis and cancer: mitochondria meet the “Iron Maiden” cell death. Cells 9(6):1505. https://doi.org/10.3390/cells9061505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gao M, Yi J, Zhu J et al (2019) Role of mitochondria in ferroptosis. Mol Cell 73(2):354-363.e3. https://doi.org/10.1016/j.molcel.2018.10.042

    Article  CAS  PubMed  Google Scholar 

  76. Wu H, Wang F, Ta N et al (2021) The multifaceted regulation of mitochondria in ferroptosis. Life Basel Switz 11(3):222. https://doi.org/10.3390/life11030222

    Article  CAS  Google Scholar 

  77. Gan B (2021) Mitochondrial regulation of ferroptosis. J Cell Biol 220(9):e202105043. https://doi.org/10.1083/jcb.202105043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lee H, Zandkarimi F, Zhang Y et al (2020) Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol 22(2):225–234. https://doi.org/10.1038/s41556-020-0461-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Otasevic V, Vucetic M, Grigorov I et al (2021) Ferroptosis in different pathological contexts seen through the eyes of mitochondria. Oxid Med Cell Longev 2021:5537330. https://doi.org/10.1155/2021/5537330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li C, Dong X, Du W et al (2020) LKB1-AMPK axis negatively regulates ferroptosis by inhibiting fatty acid synthesis. Signal Transduct Target Ther 5(1):187. https://doi.org/10.1038/s41392-020-00297-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jhurry ND, Chakrabarti M, McCormick SP et al (2012) Biophysical investigation of the ironome of human jurkat cells and mitochondria. Biochemistry 51(26):5276–5284. https://doi.org/10.1021/bi300382d

    Article  CAS  PubMed  Google Scholar 

  82. Yuan H, Li X, Zhang X et al (2016) CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem Biophys Res Commun 478(2):838–844. https://doi.org/10.1016/j.bbrc.2016.08.034

    Article  CAS  PubMed  Google Scholar 

  83. Homma T, Kobayashi S, Fujii J (2020) Cysteine preservation confers resistance to glutathione-depleted cells against ferroptosis via CDGSH iron sulphur domain-containing proteins (CISDs). Free Radic Res 54(6):397–407. https://doi.org/10.1080/10715762.2020.1780229

    Article  CAS  PubMed  Google Scholar 

  84. Kyriakoudi S, Drousiotou A, Petrou PP (2021) When the balance tips: dysregulation of mitochondrial dynamics as a culprit in disease. Int J Mol Sci 22(9):4617. https://doi.org/10.3390/ijms22094617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bhatti JS, Bhatti GK, Reddy PH (2017) Mitochondrial dysfunction and oxidative stress in metabolic disorders—a step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis 1863(5):1066–1077. https://doi.org/10.1016/j.bbadis.2016.11.010

    Article  CAS  PubMed  Google Scholar 

  86. Doll S, Freitas FP, Shah R et al (2019) FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575(7784):693–698. https://doi.org/10.1038/s41586-019-1707-0

    Article  CAS  PubMed  Google Scholar 

  87. Mao C, Liu X, Zhang Y et al (2021) DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 593(7860):586–590. https://doi.org/10.1038/s41586-021-03539-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kraft VAN, Bezjian CT, Pfeiffer S et al (2020) GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci 6(1):41–53. https://doi.org/10.1021/acscentsci.9b01063

    Article  CAS  PubMed  Google Scholar 

  89. Qiu C, Liu T, Luo D et al (2022) Novel therapeutic savior for osteosarcoma: the endorsement of ferroptosis. Front Oncol 12:746030. https://doi.org/10.3389/fonc.2022.746030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wei X, Yi X, Zhu X-H et al (2020) Posttranslational modifications in ferroptosis. Oxid Med Cell Longev 2020:8832043. https://doi.org/10.1155/2020/8832043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zheng J, Conrad M (2020) The metabolic underpinnings of ferroptosis. Cell Metab 32(6):920–937. https://doi.org/10.1016/j.cmet.2020.10.011

    Article  CAS  PubMed  Google Scholar 

  92. Lv Y, Wu M, Wang Z et al (2022) Ferroptosis: from regulation of lipid peroxidation to the treatment of diseases. Cell Biol Toxicol. https://doi.org/10.1007/s10565-022-09778-2

    Article  PubMed  Google Scholar 

  93. Soula M, Weber RA, Zilka O et al (2020) Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol 16(12):1351–1360. https://doi.org/10.1038/s41589-020-0613-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jiang L, Kon N, Li T et al (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520(7545):57–62. https://doi.org/10.1038/nature14344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chu B, Kon N, Chen D et al (2019) ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol 21(5):579–591. https://doi.org/10.1038/s41556-019-0305-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sun W-Y, Tyurin VA, Mikulska-Ruminska K et al (2021) Phospholipase iPLA2β averts ferroptosis by eliminating a redox lipid death signal. Nat Chem Biol 17(4):465–476. https://doi.org/10.1038/s41589-020-00734-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen D, Chu B, Yang X et al (2021) iPLA2β-mediated lipid detoxification controls p53-driven ferroptosis independent of GPX4. Nat Commun 12(1):3644. https://doi.org/10.1038/s41467-021-23902-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tarangelo A, Magtanong L, Bieging-Rolett KT et al (2018) p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep 22(3):569–575. https://doi.org/10.1016/j.celrep.2017.12.077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen L, Heikkinen L, Wang C et al (2019) Trends in the development of miRNA bioinformatics tools. Brief Bioinform 20(5):1836–1852. https://doi.org/10.1093/bib/bby054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Saliminejad K, Khorram Khorshid HR, Soleymani Fard S et al (2019) An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol 234(5):5451–5465. https://doi.org/10.1002/jcp.27486

    Article  CAS  PubMed  Google Scholar 

  101. Zhang H, Deng T, Liu R et al (2020) CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer 19(1):43. https://doi.org/10.1186/s12943-020-01168-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tomita K, Nagasawa T, Kuwahara Y et al (2021) MiR-7-5p is involved in ferroptosis signaling and radioresistance thru the generation of ROS in radioresistant HeLa and SAS cell lines. Int J Mol Sci 22(15):8300. https://doi.org/10.3390/ijms22158300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yang X, Liu J, Wang C et al (2021) miR-18a promotes glioblastoma development by down-regulating ALOXE3-mediated ferroptotic and anti-migration activities. Oncogenesis 10(2):15. https://doi.org/10.1038/s41389-021-00304-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Doll S, Proneth B, Tyurina YY et al (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13(1):91–98. https://doi.org/10.1038/nchembio.2239

    Article  CAS  PubMed  Google Scholar 

  105. Lu Y, Chan Y-T, Tan H-Y et al (2022) Epigenetic regulation of ferroptosis via ETS1/miR-23a-3p/ACSL4 axis mediates sorafenib resistance in human hepatocellular carcinoma. J Exp Clin Cancer Res CR 41(1):3. https://doi.org/10.1186/s13046-021-02208-x

    Article  CAS  PubMed  Google Scholar 

  106. Ma L-L, Liang L, Zhou D et al (2021) Tumor suppressor miR-424-5p abrogates ferroptosis in ovarian cancer through targeting ACSL4. Neoplasma 68(01):165–173. https://doi.org/10.4149/neo_2020_200707N705

    Article  CAS  PubMed  Google Scholar 

  107. Ou R, Lu S, Wang L et al (2022) Circular RNA circLMO1 suppresses cervical cancer growth and metastasis by triggering miR-4291/ACSL4-mediated ferroptosis. Front Oncol 12:858598. https://doi.org/10.3389/fonc.2022.858598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lu Y, Chan Y-T, Tan H-Y et al (2022) Epigenetic regulation of ferroptosis via ETS1/miR-23a-3p/ACSL4 axis mediates sorafenib resistance in human hepatocellular carcinoma. J Exp Clin Cancer Res CR 41(1):3. https://doi.org/10.1186/s13046-021-02208-x

    Article  CAS  PubMed  Google Scholar 

  109. Bao C, Zhang J, Xian S-Y et al (2021) MicroRNA-670-3p suppresses ferroptosis of human glioblastoma cells through targeting ACSL4. Free Radic Res 55(7):743–754. https://doi.org/10.1080/10715762.2021.1962009

    Article  CAS  Google Scholar 

  110. Maschalidi S, Mehrotra P, Keçeli BN et al (2022) Targeting SLC7A11 improves efferocytosis by dendritic cells and wound healing in diabetes. Nature 606(7915):776–784. https://doi.org/10.1038/s41586-022-04754-6

    Article  CAS  PubMed  Google Scholar 

  111. Zhang X, Zheng C, Gao Z et al (2022) SLC7A11/xCT prevents cardiac hypertrophy by inhibiting ferroptosis. Cardiovasc Drugs Ther 36(3):437–447. https://doi.org/10.1007/s10557-021-07220-z

    Article  CAS  PubMed  Google Scholar 

  112. Ni H, Qin H, Sun C et al (2021) MiR-375 reduces the stemness of gastric cancer cells through triggering ferroptosis. Stem Cell Res Ther 12(1):325. https://doi.org/10.1186/s13287-021-02394-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sun D, Li Y-C, Zhang X-Y (2021) Lidocaine promoted ferroptosis by targeting miR-382-5p /SLC7A11 axis in ovarian and breast cancer. Front Pharmacol 12:681223. https://doi.org/10.3389/fphar.2021.681223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mao S-H, Zhu C-H, Nie Y et al (2021) Levobupivacaine induces ferroptosis by miR-489-3p/SLC7A11 signaling in gastric cancer. Front Pharmacol 12:681338. https://doi.org/10.3389/fphar.2021.681338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ding C, Ding X, Zheng J et al (2020) miR-182-5p and miR-378a-3p regulate ferroptosis in I/R-induced renal injury. Cell Death Dis 11(10):929. https://doi.org/10.1038/s41419-020-03135-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang H-H, Ma J-N, Zhan X-R (2021) Circular RNA Circ_0067934 attenuates ferroptosis of thyroid cancer cells by miR-545-3p/SLC7A11 signaling. Front Endocrinol 12:670031. https://doi.org/10.3389/fendo.2021.670031

    Article  Google Scholar 

  117. Yu Y, MohamedAl-Sharani H, Zhang B (2023) EZH2-mediated SLC7A11 upregulation via miR-125b-5p represses ferroptosis of TSCC. Oral Dis 29(3):880–891. https://doi.org/10.1111/odi.14040

    Article  PubMed  Google Scholar 

  118. Sun K, Ren W, Li S et al (2022) MiR-34c-3p upregulates erastin-induced ferroptosis to inhibit proliferation in oral squamous cell carcinomas by targeting SLC7A11. Pathol Res Pract 231:153778. https://doi.org/10.1016/j.prp.2022.153778

    Article  CAS  PubMed  Google Scholar 

  119. Yadav P, Sharma P, Sundaram S et al (2021) SLC7A11/ xCT is a target of miR-5096 and its restoration partially rescues miR-5096-mediated ferroptosis and anti-tumor effects in human breast cancer cells. Cancer Lett 522:211–224. https://doi.org/10.1016/j.canlet.2021.09.033

    Article  CAS  PubMed  Google Scholar 

  120. Anonymous. Circular RNA CircEPSTI1 Accelerates Cervical Cancer Progression via MiR-375/409-3P/515-5p-SLC7A11 Axis - PubMed. n.d. https://pubmed.ncbi.nlm.nih.gov/33534779/. Accessed 26 Mar 2023

  121. Luo M, Wu L, Zhang K et al (2018) miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma. Cell Death Differ 25(8):1457–1472. https://doi.org/10.1038/s41418-017-0053-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lyu N, Zeng Y, Kong Y et al (2021) Ferroptosis is involved in the progression of hepatocellular carcinoma through the circ0097009/miR-1261/SLC7A11 axis. Ann Transl Med 9(8):675. https://doi.org/10.21037/atm-21-997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jiang X, Guo S, Xu M et al (2022) TFAP2C-mediated lncRNA PCAT1 inhibits ferroptosis in docetaxel-resistant prostate cancer through c-Myc/miR-25-3p/SLC7A11 signaling. Front Oncol 12:862015. https://doi.org/10.3389/fonc.2022.862015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lu X, Kang N, Ling X et al (2021) MiR-27a-3p promotes non-small cell lung cancer through SLC7A11-mediated-ferroptosis. Front Oncol 11:759346. https://doi.org/10.3389/fonc.2021.759346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yang WS, SriRamaratnam R, Welsch ME et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1–2):317–331. https://doi.org/10.1016/j.cell.2013.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Xu Z, Chen L, Wang C et al (2021) MicroRNA-1287-5p promotes ferroptosis of osteosarcoma cells through inhibiting GPX4. Free Radic Res 55(11–12):1119–1129. https://doi.org/10.1080/10715762.2021.2024816

    Article  CAS  PubMed  Google Scholar 

  127. Hou Y, Cai S, Yu S et al (2021) Metformin induces ferroptosis by targeting miR-324-3p/GPX4 axis in breast cancer. Acta Biochim Biophys Sin 53(3):333–341. https://doi.org/10.1093/abbs/gmaa180

    Article  CAS  PubMed  Google Scholar 

  128. Deng S-H, Wu D-M, Li L et al (2021) miR-324-3p reverses cisplatin resistance by inducing GPX4-mediated ferroptosis in lung adenocarcinoma cell line A549. Biochem Biophys Res Commun 549:54–60. https://doi.org/10.1016/j.bbrc.2021.02.077

    Article  CAS  PubMed  Google Scholar 

  129. Liu L, Yao H, Zhou X et al (2022) MiR-15a-3p regulates ferroptosis via targeting glutathione peroxidase GPX4 in colorectal cancer. Mol Carcinog 61(3):301–310. https://doi.org/10.1002/mc.23367

    Article  CAS  PubMed  Google Scholar 

  130. Yang Y, Lin Z, Han Z et al (2021) miR-539 activates the SAPK/JNK signaling pathway to promote ferropotosis in colorectal cancer by directly targeting TIPE. Cell Death Discov 7(1):272. https://doi.org/10.1038/s41420-021-00659-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Xu Q, Zhou L, Yang G et al (2020) CircIL4R facilitates the tumorigenesis and inhibits ferroptosis in hepatocellular carcinoma by regulating the miR-541-3p/GPX4 axis. Cell Biol Int 44(11):2344–2356. https://doi.org/10.1002/cbin.11444

    Article  CAS  PubMed  Google Scholar 

  132. He G-N, Bao N-R, Wang S et al (2021) Ketamine induces ferroptosis of liver cancer cells by targeting lncRNA PVT1/miR-214-3p/GPX4. Drug Des Devel Ther 15:3965–3978. https://doi.org/10.2147/DDDT.S332847

    Article  PubMed  PubMed Central  Google Scholar 

  133. Chen W, Fu J, Chen Y et al (2021) Circular RNA circKIF4A facilitates the malignant progression and suppresses ferroptosis by sponging miR-1231 and upregulating GPX4 in papillary thyroid cancer. Aging 13(12):16500–16512. https://doi.org/10.18632/aging.203172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zheng S, Hu L, Song Q et al (2021) miR-545 promotes colorectal cancer by inhibiting transferring in the non-normal ferroptosis signaling. Aging 13(24):26137–26147. https://doi.org/10.18632/aging.203801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Li Z, Liu J, Chen H et al (2020) Ferritin Light Chain (FTL) competes with long noncoding RNA Linc00467 for miR-133b binding site to regulate chemoresistance and metastasis of colorectal cancer. Carcinogenesis 41(4):467–477. https://doi.org/10.1093/carcin/bgz181

    Article  CAS  PubMed  Google Scholar 

  136. Zhang R, Pan T, Xiang Y et al (2022) Curcumenol triggered ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1 axis. Bioact Mater 13:23–36. https://doi.org/10.1016/j.bioactmat.2021.11.013

    Article  CAS  PubMed  Google Scholar 

  137. Zhu C, Song Z, Chen Z et al (2022) MicroRNA-4735-3p facilitates ferroptosis in clear cell renal cell carcinoma by targeting SLC40A1. Anal Cell Pathol Amst 2022:4213401. https://doi.org/10.1155/2022/4213401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wan J, Ren H, Wang J (2019) Iron toxicity, lipid peroxidation and ferroptosis after intracerebral haemorrhage. Stroke Vasc Neurol 4(2):93–95. https://doi.org/10.1136/svn-2018-000205

    Article  PubMed  PubMed Central  Google Scholar 

  139. Bao W-D, Zhou X-T, Zhou L-T et al (2020) Targeting miR-124/Ferroportin signaling ameliorated neuronal cell death through inhibiting apoptosis and ferroptosis in aged intracerebral hemorrhage murine model. Aging Cell 19(11):e13235. https://doi.org/10.1111/acel.13235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sangokoya C, Doss JF, Chi J-T (2013) Iron-responsive miR-485-3p regulates cellular iron homeostasis by targeting ferroportin. PLoS Genet 9(4):e1003408. https://doi.org/10.1371/journal.pgen.1003408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Fan H, Ai R, Mu S, Niu X, Guo Z, Liu L (2022) MiR-19a suppresses ferroptosis of colorectal cancer cells by targeting IREB2. Bioengineered 13(5):12021–12029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yoo HC, Park SJ, Nam M et al (2020) A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells. Cell Metab 31(2):267-283.e12. https://doi.org/10.1016/j.cmet.2019.11.020

    Article  CAS  PubMed  Google Scholar 

  143. Sharma D, Yu Y, Shen L et al (2021) SLC1A5 provides glutamine and asparagine necessary for bone development in mice. eLife 10:e71595. https://doi.org/10.7554/eLife.71595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Luo M, Wu L, Zhang K et al (2018) miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma. Cell Death Differ 25(8):1457–1472. https://doi.org/10.1038/s41418-017-0053-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhang K, Wu L, Zhang P et al (2018) miR-9 regulates ferroptosis by targeting glutamic-oxaloacetic transaminase GOT1 in melanoma. Mol Carcinog 57(11):1566–1576. https://doi.org/10.1002/mc.22878

    Article  CAS  PubMed  Google Scholar 

  146. Sengupta D, Cassel T, Teng K-Y et al (2020) Regulation of hepatic glutamine metabolism by miR-122. Mol Metab 34:174–186. https://doi.org/10.1016/j.molmet.2020.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wang F, Li J, Zhao Y et al (2022) miR-672-3p promotes functional recovery in rats with contusive spinal cord injury by inhibiting ferroptosis suppressor protein 1. Oxid Med Cell Longev 2022:6041612. https://doi.org/10.1155/2022/6041612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bazhabayi M, Qiu X, Li X et al (2021) CircGFRA1 facilitates the malignant progression of HER-2-positive breast cancer via acting as a sponge of miR-1228 and enhancing AIFM2 expression. J Cell Mol Med 25(21):10248–10256. https://doi.org/10.1111/jcmm.16963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Song Z, Jia G, Ma P et al (2021) Exosomal miR-4443 promotes cisplatin resistance in non-small cell lung carcinoma by regulating FSP1 m6A modification-mediated ferroptosis. Life Sci 276:119399. https://doi.org/10.1016/j.lfs.2021.119399

    Article  CAS  PubMed  Google Scholar 

  150. Lu M, Li J, Fan X et al (2022) Novel immune-related ferroptosis signature in esophageal cancer: an informatics exploration of biological processes related to the TMEM161B-AS1/hsa-miR-27a-3p/GCH1 regulatory network. Front Genet 13:829384. https://doi.org/10.3389/fgene.2022.829384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Yan H, Zou T, Tuo Q et al (2021) Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther 6(1):49. https://doi.org/10.1038/s41392-020-00428-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Stockwell BR, Friedmann Angeli JP, Bayir H et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171(2):273–285. https://doi.org/10.1016/j.cell.2017.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22(4):266–282. https://doi.org/10.1038/s41580-020-00324-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lu Y, Chan Y-T, Tan H-Y et al (2022) Epigenetic regulation of ferroptosis via ETS1/miR-23a-3p/ACSL4 axis mediates sorafenib resistance in human hepatocellular carcinoma. J Exp Clin Cancer Res CR 41(1):3. https://doi.org/10.1186/s13046-021-02208-x

    Article  CAS  PubMed  Google Scholar 

  155. Yadav P, Sharma P, Sundaram S et al (2021) SLC7A11/ xCT is a target of miR-5096 and its restoration partially rescues miR-5096-mediated ferroptosis and anti-tumor effects in human breast cancer cells. Cancer Lett 522:211–224. https://doi.org/10.1016/j.canlet.2021.09.033

    Article  CAS  PubMed  Google Scholar 

  156. Gomaa A, Peng D, Chen Z et al (2019) Epigenetic regulation of AURKA by miR-4715-3p in upper gastrointestinal cancers. Sci Rep 9(1):16970. https://doi.org/10.1038/s41598-019-53174-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhai H, Zhong S, Wu R et al (2023) Suppressing circIDE/miR-19b-3p/RBMS1 axis exhibits promoting-tumour activity through upregulating GPX4 to diminish ferroptosis in hepatocellular carcinoma. Epigenetics 18(1):2192438. https://doi.org/10.1080/15592294.2023.2192438

    Article  PubMed  PubMed Central  Google Scholar 

  158. Babu KR, Muckenthaler MU (2016) miR-20a regulates expression of the iron exporter ferroportin in lung cancer. J Mol Med Berl Ger 94(3):347–359. https://doi.org/10.1007/s00109-015-1362-3

    Article  CAS  Google Scholar 

  159. Li X, Si W, Li Z et al (2021) miR-335 promotes ferroptosis by targeting ferritin heavy chain 1 in in vivo and in vitro models of Parkinson’s disease. Int J Mol Med 47(4):61. https://doi.org/10.3892/ijmm.2021.4894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wang W, Shi F, Cui J et al (2022) MiR-378a-3p/ SLC7A11 regulate ferroptosis in nerve injury induced by lead exposure. Ecotoxicol Environ Saf 239:113639. https://doi.org/10.1016/j.ecoenv.2022.113639

    Article  CAS  PubMed  Google Scholar 

  161. Ma J, Li X, Fan Y et al (2022) miR-494-3p promotes erastin-induced ferroptosis by targeting REST to activate the interplay between SP1 and ACSL4 in Parkinson’s disease. Oxid Med Cell Longev 2022:7671324. https://doi.org/10.1155/2022/7671324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lu J, Xu F, Lu H (2020) LncRNA PVT1 regulates ferroptosis through miR-214-mediated TFR1 and p53. Life Sci 260:118305. https://doi.org/10.1016/j.lfs.2020.118305

    Article  CAS  PubMed  Google Scholar 

  163. Zhu L, Feng Z, Zhang J et al (2023) MicroRNA-27a regulates ferroptosis through SLC7A11 to aggravate cerebral ischemia-reperfusion injury. Neurochem Res 48(5):1370–1381. https://doi.org/10.1007/s11064-022-03826-3

    Article  CAS  PubMed  Google Scholar 

  164. Ye J, Lyu T-J, Li L-Y et al (2023) Ginsenoside Re attenuates myocardial ischemia/reperfusion induced ferroptosis via miR-144-3p/SLC7A11. Phytomedicine 113:154681. https://doi.org/10.1016/j.phymed.2023.154681

    Article  CAS  PubMed  Google Scholar 

  165. Shi L, Song Z, Li Y et al (2023) MiR-20a-5p alleviates kidney ischemia/reperfusion injury by targeting ACSL4-dependent ferroptosis. Am J Transplant 23(1):11–25. https://doi.org/10.1016/j.ajt.2022.09.003

    Article  PubMed  Google Scholar 

  166. Ding C, Ding X, Zheng J et al (2020) miR-182-5p and miR-378a-3p regulate ferroptosis in I/R-induced renal injury. Cell Death Dis 11(10):929. https://doi.org/10.1038/s41419-020-03135-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhou J, Xiao C, Zheng S et al (2022) MicroRNA-214-3p aggravates ferroptosis by targeting GPX4 in cisplatin-induced acute kidney injury. Cell Stress Chaperones 27(4):325–336. https://doi.org/10.1007/s12192-022-01271-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Tao W, Liu F, Zhang J et al (2021) miR-3587 inhibitor attenuates ferroptosis following renal ischemia-reperfusion through HO-1. Front Mol Biosci 8:789927. https://doi.org/10.3389/fmolb.2021.789927

    Article  CAS  PubMed  Google Scholar 

  169. Zhuang S, Ma Y, Zeng Y et al (2021) METTL14 promotes doxorubicin-induced cardiomyocyte ferroptosis by regulating the KCNQ1OT1-miR-7-5p-TFRC axis. Cell Biol Toxicol. https://doi.org/10.1007/s10565-021-09660-7

    Article  PubMed  Google Scholar 

  170. Li H, Ding J, Liu W et al (2023) Plasma exosomes from patients with acute myocardial infarction alleviate myocardial injury by inhibiting ferroptosis through miR-26b-5p/SLC7A11 axis. Life Sci 322:121649. https://doi.org/10.1016/j.lfs.2023.121649

    Article  CAS  PubMed  Google Scholar 

  171. Ni T, Huang X, Pan S et al (2021) Inhibition of the long non-coding RNA ZFAS1 attenuates ferroptosis by sponging miR-150-5p and activates CCND2 against diabetic cardiomyopathy. J Cell Mol Med 25(21):9995–10007. https://doi.org/10.1111/jcmm.16890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Dai R, Yang X, He W et al (2023) LncRNA AC005332.7 inhibited ferroptosis to alleviate acute myocardial infarction through regulating miR-331–3p/CCND2 axis. Korean Circ J 53(3):151–167. https://doi.org/10.4070/kcj.2022.0242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hayes JD, Dinkova-Kostova AT, Tew KD (2020) Oxidative stress in cancer. Cancer Cell 38(2):167–197. https://doi.org/10.1016/j.ccell.2020.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Viswanathan VS, Ryan MJ, Dhruv HD et al (2017) Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547(7664):453–457. https://doi.org/10.1038/nature23007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Bystrom LM, Rivella S (2015) Cancer cells with irons in the fire. Free Radic Biol Med 79:337–342. https://doi.org/10.1016/j.freeradbiomed.2014.04.035

    Article  CAS  PubMed  Google Scholar 

  176. Zeng W, Long X, Liu P-S et al (2023) The interplay of oncogenic signaling, oxidative stress and ferroptosis in cancer. Int J Cancer. https://doi.org/10.1002/ijc.34486

    Article  PubMed  Google Scholar 

  177. Zhang H, Deng T, Liu R et al (2020) CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer 19(1):43. https://doi.org/10.1186/s12943-020-01168-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Deng S-H, Wu D-M, Li L et al (2021) miR-324-3p reverses cisplatin resistance by inducing GPX4-mediated ferroptosis in lung adenocarcinoma cell line A549. Biochem Biophys Res Commun 549:54–60. https://doi.org/10.1016/j.bbrc.2021.02.077

    Article  CAS  PubMed  Google Scholar 

  179. Song Z, Jia G, Ma P et al (2021) Exosomal miR-4443 promotes cisplatin resistance in non-small cell lung carcinoma by regulating FSP1 m6A modification-mediated ferroptosis. Life Sci 276:119399. https://doi.org/10.1016/j.lfs.2021.119399

    Article  CAS  PubMed  Google Scholar 

  180. Jakaria M, Belaidi AA, Bush AI et al (2021) Ferroptosis as a mechanism of neurodegeneration in Alzheimer’s disease. J Neurochem 159(5):804–825. https://doi.org/10.1111/jnc.15519

    Article  CAS  PubMed  Google Scholar 

  181. Masaldan S, Bush AI, Devos D et al (2019) Striking while the iron is hot: iron metabolism and ferroptosis in neurodegeneration. Free Radic Biol Med 133:221–233. https://doi.org/10.1016/j.freeradbiomed.2018.09.033

    Article  CAS  PubMed  Google Scholar 

  182. Ward RJ, Zucca FA, Duyn JH et al (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13(10):1045–1060. https://doi.org/10.1016/S1474-4422(14)70117-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Ward RJ, Dexter DT, Crichton RR (2022) Iron, neuroinflammation and neurodegeneration. Int J Mol Sci 23(13):7267. https://doi.org/10.3390/ijms23137267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Levi S, Cozzi A, Santambrogio P (2019) Iron pathophysiology in neurodegeneration with brain iron accumulation. Adv Exp Med Biol 1173:153–177. https://doi.org/10.1007/978-981-13-9589-5_9

    Article  CAS  PubMed  Google Scholar 

  185. Mahoney-Sánchez L, Bouchaoui H, Ayton S et al (2021) Ferroptosis and its potential role in the physiopathology of Parkinson’s disease. Prog Neurobiol 196:101890. https://doi.org/10.1016/j.pneurobio.2020.101890

    Article  CAS  PubMed  Google Scholar 

  186. Jakaria M, Belaidi AA, Bush AI et al (2021) Ferroptosis as a mechanism of neurodegeneration in Alzheimer’s disease. J Neurochem 159(5):804–825. https://doi.org/10.1111/jnc.15519

    Article  CAS  PubMed  Google Scholar 

  187. Bagwe-Parab S, Kaur G (2020) Molecular targets and therapeutic interventions for iron induced neurodegeneration. Brain Res Bull 156:1–9. https://doi.org/10.1016/j.brainresbull.2019.12.011

    Article  CAS  PubMed  Google Scholar 

  188. Masaldan S, Bush AI, Devos D et al (2019) Striking while the iron is hot: iron metabolism and ferroptosis in neurodegeneration. Free Radic Biol Med 133:221–233. https://doi.org/10.1016/j.freeradbiomed.2018.09.033

    Article  CAS  PubMed  Google Scholar 

  189. Hambright WS, Fonseca RS, Chen L et al (2017) Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol 12:8–17. https://doi.org/10.1016/j.redox.2017.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Hauet T, Pisani DF (2022) New strategies protecting from ischemia/reperfusion. Int J Mol Sci 23(24):15867. https://doi.org/10.3390/ijms232415867

    Article  PubMed  PubMed Central  Google Scholar 

  191. Ravingerová T, Kindernay L, Barteková M et al (2020) The molecular mechanisms of iron metabolism and its role in cardiac dysfunction and cardioprotection. Int J Mol Sci 21(21):7889. https://doi.org/10.3390/ijms21217889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Granata S, Votrico V, Spadaccino F et al (2022) Oxidative stress and ischemia/reperfusion injury in kidney transplantation: focus on ferroptosis, mitophagy and new antioxidants. Antioxid Basel Switz 11(4):769. https://doi.org/10.3390/antiox11040769

    Article  CAS  Google Scholar 

  193. Stamenkovic A, O’Hara KA, Nelson DC et al (2021) Oxidized phosphatidylcholines trigger ferroptosis in cardiomyocytes during ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 320(3):H1170–H1184. https://doi.org/10.1152/ajpheart.00237.2020

    Article  CAS  PubMed  Google Scholar 

  194. Park E, Chung SW (2019) ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis 10(11):822. https://doi.org/10.1038/s41419-019-2064-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Yi L, Hu Y, Wu Z et al (2022) TFRC upregulation promotes ferroptosis in CVB3 infection via nucleus recruitment of Sp1. Cell Death Dis 13(7):592. https://doi.org/10.1038/s41419-022-05027-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Makris K, Spanou L (2016) Acute kidney injury: definition, pathophysiology and clinical phenotypes. Clin Biochem Rev 37(2):85–98

    PubMed  PubMed Central  Google Scholar 

  197. Scindia PhDY, Leeds MdJ, Swaminathan MdS (2019) Iron homeostasis in healthy kidney and its role in acute kidney injury. Semin Nephrol 39(1):76–84. https://doi.org/10.1016/j.semnephrol.2018.10.006

    Article  CAS  Google Scholar 

  198. Martin-Sanchez D, Fontecha-Barriuso M, Martinez-Moreno JM et al (2020) Ferroptosis and kidney disease. Nefrologia 40(4):384–394. https://doi.org/10.1016/j.nefro.2020.03.005

    Article  PubMed  Google Scholar 

  199. Wang Y, Quan F, Cao Q et al (2021) Quercetin alleviates acute kidney injury by inhibiting ferroptosis. J Adv Res 28:231–243. https://doi.org/10.1016/j.jare.2020.07.007

    Article  CAS  PubMed  Google Scholar 

  200. Kwon M-Y, Park E, Lee S-J et al (2015) Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget 6(27):24393–24403. https://doi.org/10.18632/oncotarget.5162

    Article  PubMed  PubMed Central  Google Scholar 

  201. Conrad M (n.d.) Broken hearts: Iron overload, ferroptosis and cardiomyopathy

  202. Gordan R, Wongjaikam S, Gwathmey JK et al (2018) Involvement of cytosolic and mitochondrial iron in iron overload cardiomyopathy: an update. Heart Fail Rev 23(5):801–816. https://doi.org/10.1007/s10741-018-9700-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Kumfu S, Khamseekaew J, Palee S et al (2018) A combination of an iron chelator with an antioxidant exerts greater efficacy on cardioprotection than monotherapy in iron-overload thalassemic mice. Free Radic Res 52(1):70–79. https://doi.org/10.1080/10715762.2017.1414208

    Article  CAS  PubMed  Google Scholar 

  204. Sumneang N, Kumfu S, Khamseekaew J et al (2019) Combined iron chelator with N-acetylcysteine exerts the greatest effect on improving cardiac calcium homeostasis in iron-overloaded thalassemic mice. Toxicology 427:152289. https://doi.org/10.1016/j.tox.2019.152289

    Article  CAS  PubMed  Google Scholar 

  205. Stockwell BR, Jiang X, Gu W (2020) Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol 30(6):478–490. https://doi.org/10.1016/j.tcb.2020.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Conrad M, Lorenz SM, Proneth B (2021) Targeting ferroptosis: new hope for as-yet-incurable diseases. Trends Mol Med 27(2):113–122. https://doi.org/10.1016/j.molmed.2020.08.010

    Article  CAS  PubMed  Google Scholar 

  207. Mahmoudi-Lamouki R, Kadkhoda S, Hussen BM et al (2023) Emerging role of miRNAs in the regulation of ferroptosis. Front Mol Biosci 10:1115996. https://doi.org/10.3389/fmolb.2023.1115996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Kannan M, Sil S, Oladapo A et al (2023) HIV-1 Tat-mediated microglial ferroptosis involves the miR-204–ACSL4 signaling axis. Redox Biol 62:102689. https://doi.org/10.1016/j.redox.2023.102689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Chen B, Wang H, Lv C et al (2021) Long non-coding RNA H19 protects against intracerebral hemorrhage injuries via regulating microRNA-106b-5p/acyl-CoA synthetase long chain family member 4 axis. Bioengineered 12(1):4004–4015. https://doi.org/10.1080/21655979.2021.1951070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Tak J, Kim YS, Kim TH et al (2022) Gα12 overexpression in hepatocytes by ER stress exacerbates acute liver injury via ROCK1-mediated miR-15a and ALOX12 dysregulation. Theranostics 12(4):1570–1588. https://doi.org/10.7150/thno.67722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Kong Y, Hu L, Lu K et al (2019) Ferroportin downregulation promotes cell proliferation by modulating the Nrf2-miR-17-5p axis in multiple myeloma. Cell Death Dis 10(9):624. https://doi.org/10.1038/s41419-019-1854-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Bazhabayi M, Qiu X, Li X et al (2021) CircGFRA1 facilitates the malignant progression of HER-2-positive breast cancer via acting as a sponge of miR-1228 and enhancing AIFM2 expression. J Cell Mol Med 25(21):10248–10256. https://doi.org/10.1111/jcmm.16963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Kong Y, Li S, Zhang M et al (2021) Acupuncture ameliorates neuronal cell death, inflammation, and ferroptosis and downregulated miR-23a-3p after intracerebral hemorrhage in rats. J Mol Neurosci MN 71(9):1863–1875. https://doi.org/10.1007/s12031-020-01770-x

    Article  CAS  PubMed  Google Scholar 

  214. Wu P, Li C, Ye DM et al (2021) Circular RNA circEPSTI1 accelerates cervical cancer progression via miR-375/409-3P/515-5p-SLC7A11 axis. Aging 13(3):4663–4673. https://doi.org/10.18632/aging.202518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Zhao H, Li X, Yang L et al (2021) Isorhynchophylline relieves ferroptosis-induced nerve damage after intracerebral hemorrhage via miR-122-5p/TP53/SLC7A11 pathway. Neurochem Res 46(8):1981–1994. https://doi.org/10.1007/s11064-021-03320-2

    Article  CAS  PubMed  Google Scholar 

  216. Jin W, Liu J, Yang J et al (2022) Identification of a key ceRNA network associated with ferroptosis in gastric cancer. Sci Rep 12(1):20088. https://doi.org/10.1038/s41598-022-24402-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Xiang Z, Zhou X, Mranda GM et al (2022) Identification of the ferroptosis-related ceRNA network related to prognosis and tumor immunity for gastric cancer. Aging 14(14):5768–5782. https://doi.org/10.18632/aging.204176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Dhandapani H, Bose M, Kesavan S (2022) The Immune-related ceRNA Network in Prognosis of Cervical Cancer. Asian Pac J Cancer Prev APJCP 23(10):3347–3354. https://doi.org/10.31557/APJCP.2022.23.10.3347

    Article  CAS  PubMed  Google Scholar 

  219. Patop IL, Wüst S, Kadener S (2019) Past, present, and future of circRNAs. EMBO J 38(16):e100836. https://doi.org/10.15252/embj.2018100836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Chandrasekaran B, Dahiya NR, Tyagi A et al (2020) Chronic exposure to cadmium induces a malignant transformation of benign prostate epithelial cells. Oncogenesis 9(2):23. https://doi.org/10.1038/s41389-020-0202-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Zhang Y, Guo S, Wang S et al (2021) LncRNA OIP5-AS1 inhibits ferroptosis in prostate cancer with long-term cadmium exposure through miR-128-3p/SLC7A11 signaling. Ecotoxicol Environ Saf 220:112376. https://doi.org/10.1016/j.ecoenv.2021.112376

    Article  CAS  PubMed  Google Scholar 

  222. Stockwell BR (2022) Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 185(14):2401–2421. https://doi.org/10.1016/j.cell.2022.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Chen X, Kang R, Kroemer G et al (2021) Organelle-specific regulation of ferroptosis. Cell Death Differ 28(10):2843–2856. https://doi.org/10.1038/s41418-021-00859-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Dixon SJ, Pratt DA (2023) Ferroptosis: a flexible constellation of related biochemical mechanisms. Mol Cell 83(7):1030–1042. https://doi.org/10.1016/j.molcel.2023.03.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Xiaohang Long (Chinese University of Hong Kong) for providing suggestions and ideas to improve the structure of the manuscript.

Funding

Shaoxing University, Grant/Award Number: 13012001015005; Taiwan National Health Research Institutes, Grant/Award Number: 12A1-CSPP09-014; Taiwan National Science and Technology Council, Grant/Award Number: 111-2314-B-400-026 -MY3.

Author information

Authors and Affiliations

Authors

Contributions

XX and DZ developed the ideas of this work. SJ, PL, XX and DZ drafted the manuscript. SJ created the figures. All authors approved the final manuscript.

Corresponding authors

Correspondence to Daheng Zheng or Xin Xie.

Ethics declarations

Conflict of interest

The authors declare none of conflict of interest.

Consent for publication

All the authors approved the final version and agreed to publish this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, S., Liu, PS., Zheng, D. et al. The interplay of miRNAs and ferroptosis in diseases related to iron overload. Apoptosis 29, 45–65 (2024). https://doi.org/10.1007/s10495-023-01890-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01890-w

Keywords

Navigation