Skip to main content

Advertisement

Log in

Global trends in PANoptosis research: bibliometrics and knowledge graph analysis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

PANoptosis has recently been discovered as a new type of cell death. PANoptosis mainly refers to the significant interaction among the three programmed cell death pathways of apoptosis, necroptosis, and pyroptosis. Despite this, only a few studies have examined the systematic literature in this area. By analyzing the bibliometric data for PANoptosis, we can visualize the current hotspots and predicted trends in research. This study analyzed bibliometric indicators using the Histcite Pro 2.0 tool, which searches the Web of Science for PANoptosis literature published between 2016 and 2022. A bibliometric analysis was performed using Histcite Pro 2.0, while research trends and hotspots were visualized using VOSviewer, CiteSpace and BioBERT. The output of related literature was low in the four years from the first presentation of PANoptosis in 2016 to 2020. The volume of relevant literature grew exponentially between 2020 and 2022. The United States and China play a leading role in this field. Although China started late, its research in this field is developing rapidly. As research progressed, more focus was placed on the relationship between PANoptosis and pyroptosis, as well as apoptosis and necrosis. Now is a rapid development stage of PANoptosis research. Most of the research focuses on the cellular level, and the focus is more on the treatment of tumor-related diseases. The current focus of this area is PANoptosis mechanisms in cancer and inflammation. It can be seen from the burst analysis of keywords that caspase1 and host defense have consistently been research hotspots in the field of PANoptosis, while the frequency of NLRC4, causes of autoinflammation, recognition, NLRP3, and Gasdermin D has gradually increased, all of which have become research hotspots in recent years. Finally, we used the BioBERT biomedical language model to mine the most documented genes and diseases in the PANoptosis field articles, pointing out the direction for subsequent research steps. According to a bibliometric analysis, researchers have shown an increased interest in PANoptosis over the past few years. Researchers initially focused on the molecular mechanism of PANoptosis and pyroptosis, apoptosis, and necroptosis. The role of PANoptosis in diseases and conditions such as inflammation and tumors is one of the current research hotspots in this area. The focus is more on treating inflammation-related diseases, which will become the key development direction of future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Datasets analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Dionísio PA, Amaral JD, Rodrigues CMP (2021) Oxidative stress and regulated cell death in Parkinson’s disease. Ageing Res Rev 67:101263. https://doi.org/10.1016/j.arr.2021.101263

    Article  CAS  PubMed  Google Scholar 

  2. Lai B, Wu CH, Wu CY, Luo SF, Lai JH (2022) Ferroptosis and autoimmune diseases. Front Immunol 13:916664. https://doi.org/10.3389/fimmu.2022.916664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Koren E, Fuchs Y (2021) Modes of regulated cell death in cancer. Cancer Discov 11:245–265. https://doi.org/10.1158/2159-8290.Cd-20-0789

    Article  CAS  PubMed  Google Scholar 

  4. Kuriakose T, Man SM, Malireddi RK, Karki R, Kesavardhana S, Place DE, Neale G, Vogel P, Kanneganti TD (2016) ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci Immunol. https://doi.org/10.1126/sciimmunol.aag2045

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhu P, Ke ZR, Chen JX, Li SJ, Ma TL, Fan XL (2023) Advances in mechanism and regulation of PANoptosis: prospects in disease treatment. Front Immunol 14:1120034. https://doi.org/10.3389/fimmu.2023.1120034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Karki R, Sharma BR, Lee E, Banoth B, Malireddi RKS, Samir P, Tuladhar S, Mummareddy H, Burton AR, Vogel P, Kanneganti TD (2020) Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer. JCI Insight. https://doi.org/10.1172/jci.insight.136720

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lu YY, Liu XL, Huang Y, Liao Y, Xi T, Zhang YN, Zhang LL, Shu SN, Fang F (2019) Short-lived AIM2 inflammasome activation relates to chronic MCMV infection in BALB/c mice. Curr Med Sci 39:899–905. https://doi.org/10.1007/s11596-019-2121-4

    Article  CAS  PubMed  Google Scholar 

  8. Samir P, Malireddi RKS, Kanneganti TD (2020) The PANoptosome: a deadly protein complex driving pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol 10:238. https://doi.org/10.3389/fcimb.2020.00238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mirhashemi A, Amirifar S, Tavakoli Kashani A, Zou X (2022) Macro-level literature analysis on pedestrian safety: bibliometric overview, conceptual frames, and trends. Accid Anal Prev 174:106720. https://doi.org/10.1016/j.aap.2022.106720

    Article  PubMed  Google Scholar 

  10. Jafarpour S, Rahimi-Movaghar V (2014) Determinants of risky driving behavior: a narrative review. Med J Islam Repub Iran 28:142

    PubMed  PubMed Central  Google Scholar 

  11. Kokol P, Blažun Vošner H, Završnik J (2021) Application of bibliometrics in medicine: a historical bibliometrics analysis. Health Info Libr J 38:125–138. https://doi.org/10.1111/hir.12295

    Article  PubMed  Google Scholar 

  12. Chen C (2004) Searching for intellectual turning points: progressive knowledge domain visualization. Proc Natl Acad Sci U S A 101(1):5303–5310. https://doi.org/10.1073/pnas.0307513100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kokol P, Kokol M, Zagoranski S (2022) Machine learning on small size samples: a synthetic knowledge synthesis. Sci Prog. https://doi.org/10.1177/00368504211029777

    Article  PubMed  PubMed Central  Google Scholar 

  14. Garfield E (2009) From the science of science to scientometrics visualizing the history of science with HistCite software. J Informet 3:173–179

    Article  Google Scholar 

  15. van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84:523–538. https://doi.org/10.1007/s11192-009-0146-3

    Article  PubMed  Google Scholar 

  16. Chaomei C (2006) CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inform Sci Technol 57:359–377

    Article  Google Scholar 

  17. Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, Burgess S, Jiang T, Paige E, Surendran P, Oliver-Williams C, Kamat MA, Prins BP, Wilcox SK, Zimmerman ES, Chi A, Bansal N, Spain SL, Wood AM, Morrell NW, Bradley JR, Janjic N, Roberts DJ, Ouwehand WH, Todd JA, Soranzo N, Suhre K, Paul DS, Fox CS, Plenge RM, Danesh J, Runz H, Butterworth AS (2018) Genomic atlas of the human plasma proteome. Nature 558:73–79. https://doi.org/10.1038/s41586-018-0175-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, Kang J (2020) BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36:1234–1240. https://doi.org/10.1093/bioinformatics/btz682

    Article  CAS  PubMed  Google Scholar 

  19. Yu J, Nagasu H, Murakami T, Hoang H, Broderick L, Hoffman HM, Horng T (2014) Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy. Proc Natl Acad Sci U S A 111:15514–15519. https://doi.org/10.1073/pnas.1414859111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsuchiya K, Nakajima S, Hosojima S, Thi Nguyen D, Hattori T, Le Manh T, Hori O, Mahib MR, Yamaguchi Y, Miura M, Kinoshita T, Kushiyama H, Sakurai M, Shiroishi T, Suda T (2019) Caspase-1 initiates apoptosis in the absence of gasdermin D. Nat Commun 10:2091. https://doi.org/10.1038/s41467-019-09753-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dondelinger Y, Declercq W, Montessuit S, Roelandt R, Goncalves A, Bruggeman I, Hulpiau P, Weber K, Sehon CA, Marquis RW, Bertin J, Gough PJ, Savvides S, Martinou JC, Bertrand MJ, Vandenabeele P (2014) MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep 7:971–981. https://doi.org/10.1016/j.celrep.2014.04.026

    Article  CAS  PubMed  Google Scholar 

  22. Malireddi RKS, Gurung P, Kesavardhana S, Samir P, Burton A, Mummareddy H, Vogel P, Pelletier S, Burgula S, Kanneganti TD (2020) Innate immune priming in the absence of TAK1 drives RIPK1 kinase activity-independent pyroptosis, apoptosis, necroptosis, and inflammatory disease. J Exp Med. https://doi.org/10.1084/jem.20191644

    Article  PubMed  Google Scholar 

  23. Paquette N, Conlon J, Sweet C, Rus F, Wilson L, Pereira A, Rosadini CV, Goutagny N, Weber AN, Lane WS, Shaffer SA, Maniatis S, Fitzgerald KA, Stuart L, Silverman N (2012) Serine/threonine acetylation of TGFβ-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling. Proc Natl Acad Sci U S A 109:12710–12715. https://doi.org/10.1073/pnas.1008203109

    Article  PubMed  PubMed Central  Google Scholar 

  24. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D’Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 25:486–541. https://doi.org/10.1038/s41418-017-0012-4

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kesavardhana S, Malireddi RKS, Kanneganti TD (2020) Caspases in cell death, inflammation, and pyroptosis. Annu Rev Immunol 38:567–595. https://doi.org/10.1146/annurev-immunol-073119-095439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bertheloot D, Latz E, Franklin BS (2021) Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol 18:1106–1121. https://doi.org/10.1038/s41423-020-00630-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Malireddi RKS, Tweedell RE, Kanneganti TD (2020) PANoptosis components, regulation, and implications. Aging 12:11163–11164. https://doi.org/10.18632/aging.103528

    Article  PubMed  PubMed Central  Google Scholar 

  28. Linkermann A, Stockwell BR, Krautwald S, Anders HJ (2014) Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nat Rev Immunol 14:759–767. https://doi.org/10.1038/nri3743

    Article  CAS  PubMed  Google Scholar 

  29. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15:135–147. https://doi.org/10.1038/nrm3737

    Article  CAS  PubMed  Google Scholar 

  30. Zelic M, Pontarelli F, Woodworth L, Zhu C, Mahan A, Ren Y, LaMorte M, Gruber R, Keane A, Loring P, Guo L, Xia TH, Zhang B, Orning P, Lien E, Degterev A, Hammond T, Ofengeim D (2021) RIPK1 activation mediates neuroinflammation and disease progression in multiple sclerosis. Cell Rep 35:109112. https://doi.org/10.1016/j.celrep.2021.109112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Newton K (2015) RIPK1 and RIPK3: critical regulators of inflammation and cell death. Trends Cell Biol 25:347–353. https://doi.org/10.1016/j.tcb.2015.01.001

    Article  CAS  PubMed  Google Scholar 

  32. Yuan J, Amin P, Ofengeim D (2019) Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci 20:19–33. https://doi.org/10.1038/s41583-018-0093-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Malireddi RKS, Gurung P, Mavuluri J, Dasari TK, Klco JM, Chi H, Kanneganti TD (2018) TAK1 restricts spontaneous NLRP3 activation and cell death to control myeloid proliferation. J Exp Med 215:1023–1034. https://doi.org/10.1084/jem.20171922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Orning P, Weng D, Starheim K, Ratner D, Best Z, Lee B, Brooks A, Xia S, Wu H, Kelliher MA, Berger SB, Gough PJ, Bertin J, Proulx MM, Goguen JD, Kayagaki N, Fitzgerald KA, Lien E (2018) Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science 362:1064–1069. https://doi.org/10.1126/science.aau2818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sarhan J, Liu BC, Muendlein HI, Li P, Nilson R, Tang AY, Rongvaux A, Bunnell SC, Shao F, Green DR, Poltorak A (2018) Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc Natl Acad Sci U S A 115:E10888-e10897. https://doi.org/10.1073/pnas.1809548115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lalaoui N, Boyden SE, Oda H, Wood GM, Stone DL, Chau D, Liu L, Stoffels M, Kratina T, Lawlor KE, Zaal KJM, Hoffmann PM, Etemadi N, Shield-Artin K, Biben C, Tsai WL, Blake MD, Kuehn HS, Yang D, Anderton H, Silke N, Wachsmuth L, Zheng L, Moura NS, Beck DB, Gutierrez-Cruz G, Ombrello AK, Pinto-Patarroyo GP, Kueh AJ, Herold MJ, Hall C, Wang H, Chae JJ, Dmitrieva NI, McKenzie M, Light A, Barham BK, Jones A, Romeo TM, Zhou Q, Aksentijevich I, Mullikin JC, Gross AJ, Shum AK, Hawkins ED, Masters SL, Lenardo MJ, Boehm M, Rosenzweig SD, Pasparakis M, Voss AK, Gadina M, Kastner DL, Silke J (2020) Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature 577:103–108. https://doi.org/10.1038/s41586-019-1828-5

    Article  CAS  PubMed  Google Scholar 

  37. Lin J, Kumari S, Kim C, Van TM, Wachsmuth L, Polykratis A, Pasparakis M (2016) RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation. Nature 540:124–128. https://doi.org/10.1038/nature20558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Newton K, Wickliffe KE, Maltzman A, Dugger DL, Strasser A, Pham VC, Lill JR, Roose-Girma M, Warming S, Solon M, Ngu H, Webster JD, Dixit VM (2016) RIPK1 inhibits ZBP1-driven necroptosis during development. Nature 540:129–133. https://doi.org/10.1038/nature20559

    Article  CAS  PubMed  Google Scholar 

  39. Ajibade AA, Wang Q, Cui J, Zou J, Xia X, Wang M, Tong Y, Hui W, Liu D, Su B, Wang HY, Wang RF (2012) TAK1 negatively regulates NF-κB and p38 MAP kinase activation in Gr-1+CD11b+ neutrophils. Immunity 36:43–54. https://doi.org/10.1016/j.immuni.2011.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407:802–809. https://doi.org/10.1038/35037739

    Article  CAS  PubMed  Google Scholar 

  41. Yan WT, Lu S, Yang YD, Ning WY, Cai Y, Hu XM, Zhang Q, Xiong K (2021) Research trends, hot spots and prospects for necroptosis in the field of neuroscience. Neural Regen Res 16:1628–1637. https://doi.org/10.4103/1673-5374.303032

    Article  PubMed  PubMed Central  Google Scholar 

  42. McKenzie BA, Dixit VM, Power C (2020) Fiery cell death: pyroptosis in the central nervous system. Trends Neurosci 43:55–73. https://doi.org/10.1016/j.tins.2019.11.005

    Article  CAS  PubMed  Google Scholar 

  43. Pender MP, Rist MJ (2001) Apoptosis of inflammatory cells in immune control of the nervous system: role of glia. Glia 36:137–144. https://doi.org/10.1002/glia.1103

    Article  CAS  PubMed  Google Scholar 

  44. Vahsen N, Candé C, Brière JJ, Bénit P, Joza N, Larochette N, Mastroberardino PG, Pequignot MO, Casares N, Lazar V, Feraud O, Debili N, Wissing S, Engelhardt S, Madeo F, Piacentini M, Penninger JM, Schägger H, Rustin P, Kroemer G (2004) AIF deficiency compromises oxidative phosphorylation. Embo J 23:4679–4689. https://doi.org/10.1038/sj.emboj.7600461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Motyl T, Gajkowska B, Zarzyńska J, Gajewska M, Lamparska-Przybysz M (2006) Apoptosis and autophagy in mammary gland remodeling and breast cancer chemotherapy. J Physiol Pharmacol 57(7):17–32

    PubMed  Google Scholar 

  46. Christgen S, Zheng M, Kesavardhana S, Karki R, Malireddi RKS, Banoth B, Place DE, Briard B, Sharma BR, Tuladhar S, Samir P, Burton A, Kanneganti TD (2020) Identification of the PANoptosome: a molecular platform triggering pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol 10:237. https://doi.org/10.3389/fcimb.2020.00237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zheng M, Karki R, Vogel P, Kanneganti TD (2020) Caspase-6 is a key regulator of innate immunity, inflammasome activation, and host defense. Cell 181:674-687.e613. https://doi.org/10.1016/j.cell.2020.03.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kesavardhana S, Kuriakose T, Guy CS, Samir P, Malireddi RKS, Mishra A, Kanneganti TD (2017) ZBP1/DAI ubiquitination and sensing of influenza vRNPs activate programmed cell death. J Exp Med 214:2217–2229. https://doi.org/10.1084/jem.20170550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cui Y, Wang X, Lin F, Li W, Zhao Y, Zhu F, Yang H, Rao M, Li Y, Liang H, Dai M, Liu B, Chen L, Han D, Lu R, Peng W, Zhang Y, Song C, Luo Y, Pan P (2022) MiR-29a-3p improves acute lung injury by reducing alveolar epithelial cell PANoptosis. Aging Dis 13:899–909. https://doi.org/10.14336/ad.2021.1023

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zheng M, Williams EP, Malireddi RKS, Karki R, Banoth B, Burton A, Webby R, Channappanavar R, Jonsson CB, Kanneganti TD (2020) Impaired NLRP3 inflammasome activation/pyroptosis leads to robust inflammatory cell death via caspase-8/RIPK3 during coronavirus infection. J Biol Chem 295:14040–14052. https://doi.org/10.1074/jbc.RA120.015036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, Zheng M, Sundaram B, Banoth B, Malireddi RKS, Schreiner P, Neale G, Vogel P, Webby R, Jonsson CB, Kanneganti TD (2021) Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell 184:149-168.e117. https://doi.org/10.1016/j.cell.2020.11.025

    Article  CAS  PubMed  Google Scholar 

  52. Karki R, Lee S, Mall R, Pandian N, Wang Y, Sharma BR, Malireddi RS, Yang D, Trifkovic S, Steele JA, Connelly JP, Vishwanath G, Sasikala M, Reddy DN, Vogel P, Pruett-Miller SM, Webby R, Jonsson CB, Kanneganti TD (2022) ZBP1-dependent inflammatory cell death PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection. Sci Immunol 7:6294. https://doi.org/10.1126/sciimmunol.abo6294

    Article  CAS  Google Scholar 

  53. Wang Y, Karki R, Zheng M, Kancharana B, Lee S, Kesavardhana S, Hansen BS, Pruett-Miller SM, Kanneganti TD (2021) Cutting edge: caspase-8 is a linchpin in caspase-3 and gasdermin D activation to control cell death cytokine release, and host defense during influenza A virus infection. J Immunol 207:2411–2416. https://doi.org/10.4049/jimmunol.2100757

    Article  CAS  PubMed  Google Scholar 

  54. Lee S, Channappanavar R, Kanneganti TD (2020) Coronaviruses: innate immunity, inflammasome activation, inflammatory cell death, and cytokines. Trends Immunol 41:1083–1099. https://doi.org/10.1016/j.it.2020.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  56. Karki R, Sundaram B, Sharma BR, Lee S, Malireddi RKS, Nguyen LN, Christgen S, Zheng M, Wang Y, Samir P, Neale G, Vogel P, Kanneganti TD (2021) ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. Cell Rep 37:109858. https://doi.org/10.1016/j.celrep.2021.109858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Malireddi RKS, Karki R, Sundaram B, Kancharana B, Lee S, Samir P, Kanneganti TD (2021) Inflammatory cell death PANoptosis, mediated by cytokines in diverse cancer lineages inhibits tumor growth. Immunohorizons 5:568–580. https://doi.org/10.4049/immunohorizons.2100059

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the reviewers and editors for their assistance. We thank the following organizations for their support: this work was supported by the National Natural Science Foundation of China (No. 82170654, 82100675), Key Research and Development Program of Heilongjiang Province (No.2022ZX06C06) and Excellent Youth Foundation of the First Affiliated Hospital of Harbin Medical University (2021Y12).

Funding

This research was funded by the National Natural Science Foundation of China (No. 82170654, 82100675), Key Research and Development Program of Heilongjiang Province (No.2022ZX06C06) and Excellent Youth Foundation of the First Affiliated Hospital of Harbin Medical University (2021Y12).

Author information

Authors and Affiliations

Authors

Contributions

YZ designed the study and analyzed the data. YZ and JL wrote the manuscript. BL, ZX and YH prepared the images and tables. DZ and CH reviewed and revised the manuscript. DX, DZ and CH supervised the research. All authors approved the final manuscript.

Corresponding authors

Correspondence to Dongbo Xue, Dali Zhao or Chenjun Hao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Li, J., Liu, B. et al. Global trends in PANoptosis research: bibliometrics and knowledge graph analysis. Apoptosis 29, 229–242 (2024). https://doi.org/10.1007/s10495-023-01889-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01889-3

Keywords

Navigation