Skip to main content

Advertisement

Log in

Molecular mechanisms of cell death in bronchopulmonary dysplasia

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Bronchopulmonary dysplasia (BPD) in neonates is the most common pulmonary disease that causes neonatal mortality, has complex pathogenesis, and lacks effective treatment. It is associated with chronic obstructive pulmonary disease, pulmonary hypertension, and right ventricular hypertrophy. The occurrence and development of BPD involve various factors, of which premature birth is the most crucial reason for BPD. Under the premise of abnormal lung structure and functional product, newborns are susceptible to damage to oxides, free radicals, hypoxia, infections and so on. The most influential is oxidative stress, which induces cell death in different ways when the oxidative stress balance in the body is disrupted. Increasing evidence has shown that programmed cell death (PCD), including apoptosis, necrosis, autophagy, and ferroptosis, plays a significant role in the molecular and biological mechanisms of BPD and the further development of the disease. Understanding the mode of PCD and its signaling pathways can provide new therapeutic approaches and targets for the clinical treatment of BPD. This review elucidates the mechanism of BPD, focusing on the multiple types of PCD in BPD and their molecular mechanisms, which are mainly based on experimental results obtained in rodents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data used for graphing in this review are all from references.

Abbreviations

FADD:

Fas-associated via death domain

RIPK3:

Receptor-interacting serine-threonine kinase 3

RIPK1:

Receptor-interacting serine-threonine kinase 1

NF-κB:

Nuclear factor kappa-B

TSG-6:

Tumor necrosis factor α stimulated gene 6

ERK:

Extracellular regulated protein kinases

JNK:

C-Jun N-terminal kinase

BCL-2:

B-cell lymphoma-2

SIRT1:

Sirtuin 1

SENP1:

SUMO-specific proteases 1

PI3K:

PhosphoInositide-3 Kinase

AKT:

Protein Kinase B

Keap1:

Kelch-like ECH-associated protein1

Nrf2:

Nuclear factor E2-related factor 2

ARE:

AU-rich element

DLL4:

Delta-like ligand4

ROS:

Reactive oxygen species

MLKL:

Mixed Lineage Kinase Domain-Like (protein)

PDC:

Pyruvate dehydrogenase complex

AMPK:

AMP-activated protein kinase

NLRP3:

NOD-like receptor thermal protein domain associated protein 3

GSDMD:

Gasdermin D

GSH:

Glutathione

GPX4:

Glutathione Peroxidase 4

Cys:

Cysteine

SLC7A11:

Recombinant Solute Carrier Family 7, Member 11

SLC3A2:

Recombinant Solute Carrier Family 3, Member 2

References

  1. Thébaud B, Goss KN, Laughon M, Whitsett JA, Abman SH, Steinhorn RH et al (2019) Bronchopulmonary dysplasia. Nat Rev Dis Primers 5:78

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gilfillan M, Bhandari A, Bhandari V (2021) Diagnosis and management of bronchopulmonary dysplasia. BMJ 375:n1974

    Article  PubMed  Google Scholar 

  3. Voynow JA (2017) “New” bronchopulmonary dysplasia and chronic lung disease. Paediatr Respir Rev 24:17–18

    PubMed  Google Scholar 

  4. Principi N, Di Pietro GM, Esposito S (2018) Bronchopulmonary dysplasia: clinical aspects and preventive and therapeutic strategies. J Transl Med 16:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cannavò L, Perrone S, Viola V, Marseglia L, Di Rosa G, Gitto E (2021) Oxidative stress and respiratory diseases in preterm newborns. Int J Mol Sci 22:12504

    Article  PubMed  PubMed Central  Google Scholar 

  6. Perez M, Robbins ME, Revhaug C, Saugstad OD (2019) Oxygen radical disease in the newborn, revisited: oxidative stress and disease in the newborn period. Free Radical Biol Med 142:61–72

    Article  CAS  Google Scholar 

  7. Wang S-H, Tsao P-N (2020) Phenotypes of bronchopulmonary dysplasia. Int J Mol Sci 21:6112

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bonadies L, Zaramella P, Porzionato A, Perilongo G, Muraca M, Baraldi E (2020) Present and future of bronchopulmonary dysplasia. J Clin Med 9:1539

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kaarteenaho-Wiik R, Kinnula VL (2004) Distribution of antioxidant enzymes in developing human lung, respiratory distress syndrome, and bronchopulmonary dysplasia. J Histochem Cytochem 52:1231–1240

    Article  CAS  PubMed  Google Scholar 

  10. Wang J, Dong W (2018) Oxidative stress and bronchopulmonary dysplasia. Gene 678:177–183

    Article  CAS  PubMed  Google Scholar 

  11. Papagianis PC, Pillow JJ, Moss TJ (2019) Bronchopulmonary dysplasia: Pathophysiology and potential anti-inflammatory therapies. Paediatr Respir Rev 30:34–41

    PubMed  Google Scholar 

  12. Su L-J, Zhang J-H, Gomez H, Murugan R, Hong X, Xu D et al (2019) Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev 2019:1–13

    Google Scholar 

  13. Priante G, Gianesello L, Ceol M, Del Prete D, Anglani F (2019) Cell Death in the Kidney. Int J Mol Sci 20:3598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Van Opdenbosch N, Lamkanfi M (2019) Caspases in cell death, inflammation, and disease. Immunity 50:1352–1364

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sauler M, Bazan IS, Lee PJ (2019) Cell death in the lung: the apoptosis-necroptosis axis. Annu Rev Physiol 81:375–402

    Article  CAS  PubMed  Google Scholar 

  16. Singh R, Letai A, Sarosiek K (2019) Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 20:175–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kesavardhana S, Malireddi RKS, Kanneganti T-D (2020) Caspases in cell death, inflammation, and pyroptosis. Annu Rev Immunol 38:567–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE (2017) Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol-Lung Cell Mol Physiol 313:L1101–L1153

    Article  PubMed  Google Scholar 

  19. Jiang J, Wang J, Li C, Mo L, Huang D (2022) Hyperoxia induces alveolar epithelial cell apoptosis by regulating mitochondrial function through small mothers against decapentaplegic 3 (SMAD3) and extracellular signal-regulated kinase 1/2 (ERK1/2). Bioengineered 13:242–252

    Article  CAS  PubMed  Google Scholar 

  20. Giusto K, Wanczyk H, Jensen T, Finck C (2021) Hyperoxia-induced bronchopulmonary dysplasia: better models for better therapies. Dis Model Mech 14:dmm047753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shrestha AK, Menon RT, Yallampalli C, Barrios R, Shivanna B (2021) Adrenomedullin deficiency potentiates lipopolysaccharide-induced experimental bronchopulmonary dysplasia in neonatal mice. Am J Pathol 191:2080–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cui TX (2020) CCR2 mediates chronic LPS-induced pulmonary inflammation and hypoalveolarization in a murine model of bronchopulmonary dysplasia. Front Immunol 11:16

    Article  Google Scholar 

  23. Hu Z, Zhou G (2022) CREB1 transcriptionally activates LTBR to promote the NF-κB pathway and apoptosis in lung epithelial cells. Comput Math Methods Med 2022:9588740

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hu J, Wu Z, Wang H, Geng H, Huo J, Zhu X et al (2022) Vitamin D ameliorates apoptosis and inflammation by targeting the mitochondrial and MEK1/2-ERK1/2 pathways in hyperoxia-induced bronchopulmonary dysplasia. J Inflamm Res 15:4891–4906

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jiang J, Xiao K, Chen P (2017) NOTCH signaling in lung diseases. Exp Lung Res 43:217–228

    Article  CAS  PubMed  Google Scholar 

  26. Balaji S, Dong X, Li H, Zhang Y, Steen E, Lingappan K (2018) Sex-specific differences in primary neonatal murine lung fibroblasts exposed to hyperoxia in vitro: implications for bronchopulmonary dysplasia. Physiol Genomics 50:940–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deng J, Wang S-H, Zheng X-M, Tang Z-M (2022) Calcitonin gene-related peptide attenuates hyperoxia-induced oxidative damage in alveolar epithelial type II cells through regulating viability and transdifferentiation. Inflammation 45:863–875

    Article  CAS  PubMed  Google Scholar 

  28. Gao W, Sweeney C, Walsh C, Rooney P, McCormick J, Veale DJ et al (2013) Notch signalling pathways mediate synovial angiogenesis in response to vascular endothelial growth factor and angiopoietin 2. Ann Rheum Dis 72:1080–1088

    Article  CAS  PubMed  Google Scholar 

  29. Zhan C, Sun Y, Pan J, Chen L, Yuan T (2021) Effect of the Notch4/Dll4 signaling pathway in early gestational intrauterine infection on lung development. Exp Ther Med 22:972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Singh V, Ubaid S (2020) Role of silent information regulator 1 (SIRT1) in regulating oxidative stress and inflammation. Inflammation 43:1589–1598

    Article  CAS  PubMed  Google Scholar 

  31. Luo G, Jian Z, Zhu Y, Zhu Y, Chen B, Ma R et al (2019) Sirt1 promotes autophagy and inhibits apoptosis to protect cardiomyocytes from hypoxic stress. Int J Mol Med 43:2033–2043

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Garten A, Grohmann T, Kluckova K, Lavery GG, Kiess W, Penke M (2019) Sorafenib-induced apoptosis in hepatocellular carcinoma is reversed by SIRT1. Int J Mol Sci 20:4048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang M, Zhang Q, Hu Y, Xu L, Jiang Y, Zhang C et al (2017) miR-181a increases FoxO1 acetylation and promotes granulosa cell apoptosis via SIRT1 downregulation. Cell Death Dis 8:e3088–e3088

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li M, Li S, Dou B, Zou Y, Han H, Liu D et al (2020) Cycloastragenol upregulates SIRT1 expression, attenuates apoptosis and suppresses neuroinflammation after brain ischemia. Acta Pharmacol Sin 41:1025–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yousafzai NA, Zhou Q, Xu W, Shi Q, Xu J, Feng L et al (2019) SIRT1 deacetylated and stabilized XRCC1 to promote chemoresistance in lung cancer. Cell Death Dis 10:363

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xia M, Cao H, Zheng J, Yao Y, Xu F, Lu G et al (2021) A novel stilbene derivative (GMQ3) suppressed proliferation and induced apoptosis in lung cancer via the p38-MAPK/SIRT1 pathway. Biochem Pharmacol 193:114808

    Article  CAS  PubMed  Google Scholar 

  37. Wang X, Wang Z, Tang D (2021) Aerobic exercise alleviates inflammation, oxidative stress, and apoptosis in mice with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 16:1369–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li X, Jamal M, Guo P, Jin Z, Zheng F, Song X et al (2019) Irisin alleviates pulmonary epithelial barrier dysfunction in sepsis-induced acute lung injury via activation of AMPK/SIRT1 pathways. Biomed Pharmacother 118:109363

    Article  CAS  PubMed  Google Scholar 

  39. Bulvik R, Breuer R, Dvir-Ginzberg M, Reich E, Berkman N, Wallach-Dayan SB (2020) SIRT1 deficiency, specifically in fibroblasts, decreases apoptosis resistance and is associated with resolution of lung-fibrosis. Biomolecules 10:996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang C, Yang W, He Z, Guo J, Yang X, Wang R et al (2021) Kaempferol alleviates oxidative stress and apoptosis through mitochondria-dependent pathway during lung ischemia-reperfusion injury. Front Pharmacol 12:624402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guan R, Yao H, Li Z, Qian J, Yuan L, Cai Z et al (2021) Sodium tanshinone IIA sulfonate attenuates cigarette smoke extract-induced mitochondrial dysfunction, oxidative stress, and apoptosis in alveolar epithelial cells by enhancing SIRT1 pathway. Toxicol Sci 183:352–362

    Article  CAS  PubMed  Google Scholar 

  42. Tan F, Dong W, Lei X, Liu X, Li Q, Kang L et al (2017) Attenuated SUMOylation of sirtuin 1 in premature neonates with bronchopulmonary dysplasia. Mol Med Report 17:1283–1288

    Google Scholar 

  43. Du F-L, Dong W-B, Zhang C, Li Q-P, Kang L, Lei X-P et al (2019) Budesonide and Poractant Alfa prevent bronchopulmonary dysplasia via triggering SIRT1 signaling pathway. Eur Rev Med Pharmacol Sci 23:11032–11042

    Article  Google Scholar 

  44. Wan X, Cai J, Zhu Y, Wang Q, Zhu H, Ju H et al (2019) SENP1 has an important role in lung development and influences the differentiation of alveolar type 2 cells. Int J Mol Med 43:371–381

    Google Scholar 

  45. Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT (2017) The PI3K pathway in human disease. Cell 170:605–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Linton MF, Moslehi JJ, Babaev VR (2019) Akt signaling in macrophage polarization, survival, and atherosclerosis. Int J Mol Sci 20:2703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hoxhaj G, Manning BD (2020) The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer 20:74–88

    Article  CAS  PubMed  Google Scholar 

  48. Yan J, Li J, Zhang L, Sun Y, Jiang J, Huang Y et al (2018) Nrf2 protects against acute lung injury and inflammation by modulating TLR4 and Akt signaling. Free Radical Biol Med 121:78–85

    Article  CAS  Google Scholar 

  49. Zhong X (2021) Umbilical cord blood-derived exosomes from very preterm infants with bronchopulmonary dysplasia impaired endothelial angiogenesis: roles of exosomal micrornas. Front Cell Dev Biol 9:14

    Article  Google Scholar 

  50. Abdullah ML, Al-Shabanah O, Hassan ZK, Hafez MM (2021) Eugenol-induced autophagy and apoptosis in breast cancer cells via PI3K/AKT/FOXO3a pathway inhibition. Int J Mol Sci 22:9243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu L, Yin H, Hao X, Song H, Chai J, Duan H et al (2020) Down-regulation of miR-301a-3p reduces burn-induced vascular endothelial apoptosis by potentiating hMSC-secreted IGF-1 and PI3K/Akt/FOXO3a pathway. iScience 23:101383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yue D, Sun X (2018) Idelalisib promotes Bim-dependent apoptosis through AKT/FoxO3a in hepatocellular carcinoma. Cell Death Dis 9:935

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wu D, Liang M, Dang H, Fang F, Xu F, Liu C (2018) Hydrogen protects against hyperoxia-induced apoptosis in type II alveolar epithelial cells via activation of PI3K/Akt/Foxo3a signaling pathway. Biochem Biophys Res Commun 495:1620–1627

    Article  CAS  PubMed  Google Scholar 

  54. Revhaug C, Bik-Multanowski M, Zasada M, Rognlien AGW, Günther C-C, Ksiązek T et al (2019) Immune system regulation affected by a murine experimental model of bronchopulmonary dysplasia: genomic and epigenetic findings. Neonatology 116:269–277

    Article  CAS  PubMed  Google Scholar 

  55. Bellezza I, Giambanco I, Minelli A, Donato R (2018) Nrf2-Keap1 signaling in oxidative and reductive stress. Biochimica et Biophys Acta (BBA) - Molecul Cell Res 1865:721–733

    Article  CAS  Google Scholar 

  56. Tu W, Wang H, Li S, Liu Q, Sha H (2019) The anti-inflammatory and anti-oxidant mechanisms of the keap1/Nrf2/ARE signaling pathway in chronic diseases. Aging Dis 10:637

    Article  PubMed  PubMed Central  Google Scholar 

  57. Galan-Cobo A, Sitthideatphaiboon P, Qu X, Poteete A, Pisegna MA, Tong P et al (2019) LKB1 and KEAP1/NRF2 pathways cooperatively promote metabolic reprogramming with enhanced glutamine dependence in KRAS -mutant lung adenocarcinoma. Cancer Res 79:3251–3267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yu C, Xiao J-H (2021) The keap1-Nrf2 system: a mediator between oxidative stress and aging. Rupasinghe HPV, editor. Oxid Med Cell Long 2021:1–16

    CAS  Google Scholar 

  59. Chen D, Gao Z, Wang Y, Wan B, Liu G, Chen J et al (2021) Sodium propionate enhances Nrf2-mediated protective defense against oxidative stress and inflammation in lipopolysaccharide-induced neonatal mice. J Inflamm Res 14:803–816

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cho H-Y, Miller-DeGraff L, Perrow LA, Gladwell W, Panduri V, Lih FB et al (2021) Murine neonatal oxidant lung injury: NRF2-dependent predisposition to adulthood respiratory viral infection and protection by maternal antioxidant. Antioxidants 10:1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tamatam CM, Reddy NM, Potteti HR, Ankireddy A, Noone PM, Yamamoto M et al (2020) Preconditioning the immature lung with enhanced Nrf2 activity protects against oxidant-induced hypoalveolarization in mice. Sci Rep 10:19034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. McGrath-Morrow SA, Lauer T, Collaco JM, Lopez A, Malhotra D, Alekseyev YO et al (2014) Transcriptional responses of neonatal mouse lung to hyperoxia by Nrf2 status. Cytokine 65:4–9

    Article  CAS  PubMed  Google Scholar 

  63. Zhang M, Zhang X, Chu X, Cheng L, Cai C (2021) Long non-coding RNA MALAT1 plays a protective role in bronchopulmonary dysplasia via the inhibition of apoptosis and interaction with the Keap1/Nrf2 signal pathway. Transl Pediatr 10:265–275

    Article  PubMed  PubMed Central  Google Scholar 

  64. Liu D, Wang Y, Li L, Zhao H, Li L, Liu Y et al (2019) Celecoxib Protects Hyperoxia-Induced Lung Injury via NF-κB and AQP1. Front Pediatr 7:228

    Article  PubMed  PubMed Central  Google Scholar 

  65. Day AJ, Milner CM (2019) TSG-6: A multifunctional protein with anti-inflammatory and tissue-protective properties. Matrix Biol 78–79:60–83

    Article  PubMed  Google Scholar 

  66. Chaubey S, Thueson S, Ponnalagu D, Alam MA, Gheorghe CP, Aghai Z et al (2018) Early gestational mesenchymal stem cell secretome attenuates experimental bronchopulmonary dysplasia in part via exosome-associated factor TSG-6. Stem Cell Res Ther 9:173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang H, Wu L, Deng H, Chen Y, Zhou H, Liu M et al (2020) Anti-inflammatory protein TSG-6 secreted by bone marrow mesenchymal stem cells attenuates neuropathic pain by inhibiting the TLR2/MyD88/NF-κB signaling pathway in spinal microglia. J Neuroinflammation 17:154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bryan C, Sammour I, Guerra K, Sharma M, Dapaah-Siakwan F, Huang J et al (2019) TNFα-stimulated protein 6 (TSG-6) reduces lung inflammation in an experimental model of bronchopulmonary dysplasia. Pediatr Res 85:390–397

    Article  PubMed  Google Scholar 

  69. Iosef C, Alastalo T-P, Hou Y, Chen C, Adams ES, Lyu S-C et al (2012) Inhibiting NF-κB in the developing lung disrupts angiogenesis and alveolarization. Am J Physiol-Lung Cell Mol Physiol 302:L1023–L1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu M, Iosef C, Rao S, Domingo-Gonzalez R, Fu S, Snider P et al (2021) Transforming growth factor-induced protein promotes NF-κB-mediated angiogenesis during postnatal lung development. Am J Respir Cell Mol Biol 64:318–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Maik-Rachline G, Hacohen-Lev-Ran A, Seger R (2019) Nuclear ERK: mechanism of translocation, substrates, and role in cancer. Int J Mol Sci 20:1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Menon R, Shrestha A, Barrios R, Shivanna B (2018) Hyperoxia disrupts extracellular signal-regulated kinases 1/2-induced angiogenesis in the developing lungs. Int J Mol Sci 19:1525

    Article  PubMed  PubMed Central  Google Scholar 

  73. Liang Z, Zhang X, Liu Y, Wu Q, You C (2021) SEMA3A protects against hyperoxia-induced lung injury in a bronchopulmonary dysplasia model of newborn rat by inhibiting ERK pathway. Allergol Immunopathol 49:8–15

    Article  Google Scholar 

  74. Menon RT, Thapa S, Shrestha AK, Barrios R, Shivanna B (2022) extracellular signal-regulated kinase 1 alone is dispensable for hyperoxia-mediated alveolar and pulmonary vascular simplification in neonatal mice. Antioxidants 11:1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cushing L, Jiang Z, Kuang P, Lü J (2015) The roles of microRNAs and protein components of the microRNA pathway in lung development and diseases. Am J Respir Cell Mol Biol 52:397–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li Y, Yin Z, Fan J, Zhang S, Yang W (2019) The roles of exosomal miRNAs and lncRNAs in lung diseases. Sig Transduct Target Ther 4:47

    Article  Google Scholar 

  77. Boateng E, Krauss-Etschmann S (2020) miRNAs in lung development and diseases. Int J Mol Sci 21:2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang X, Peng W, Zhang S, Wang C, He X, Zhang Z et al (2011) MicroRNA expression profile in hyperoxia-exposed newborn mice during the development of bronchopulmonary dysplasia. Respir Care 56:1009–1015

    Article  PubMed  Google Scholar 

  79. Lal CV, Olave N, Travers C, Rezonzew G, Dolma K, Simpson A et al (2018) Exosomal microRNA predicts and protects against severe bronchopulmonary dysplasia in extremely premature infants. JCI Insight 3:e93994

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhang Z-Q, Hong H, Li J, Li X-X, Huang X-M (2021) MicroRNA-214 promotes alveolarization in neonatal rat models of bronchopulmonary dysplasia via the PlGF-dependent STAT3 pathway. Mol Med 27:109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang X, Chu X, Gong X, Zhou H, Cai C (2020) The expression of miR-125b in Nrf2-silenced A549 cells exposed to hyperoxia and its relationship with apoptosis. J Cell Mol Med 24:965–972

    Article  CAS  PubMed  Google Scholar 

  82. Go H, La P, Namba F, Ito M, Yang G, Brydun A et al (2016) MiR-196a regulates heme oxygenase-1 by silencing Bach1 in the neonatal mouse lung. Am J Physiol-Lung Cell Mol Physiol 311:L400–L411

    Article  PubMed  PubMed Central  Google Scholar 

  83. Duan J, Zhang X, Zhang S, Hua S, Feng Z (2017) miR-206 inhibits FN1 expression and proliferation and promotes apoptosis of rat type II alveolar epithelial cells. Exp Ther Med 13:3203–3208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yuan H, Xiong D, Huang F, Cui J, Luo H (2019) MicroRNA-421 inhibition alleviates bronchopulmonary dysplasia in a mouse model via targeting Fgf10. J Cell Biochem 120:16876–16887

    Article  CAS  PubMed  Google Scholar 

  85. Hu Y, Xie L, Yu J, Fu H, Zhou D, Liu H (2020) Inhibition of microRNA-29a alleviates hyperoxia-induced bronchopulmonary dysplasia in neonatal mice via upregulation of GAB1. Mol Med 26:3

    Article  CAS  Google Scholar 

  86. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119

    Article  CAS  PubMed  Google Scholar 

  87. Tonnus W, Meyer C, Paliege A, Belavgeni A, von Mässenhausen A, Bornstein SR et al (2019) The pathological features of regulated necrosis. J Pathol 247:697–707

    Article  CAS  PubMed  Google Scholar 

  88. Del Re DP, Amgalan D, Linkermann A, Liu Q, Kitsis RN (2019) Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev 99:1765–1817

    Article  PubMed  PubMed Central  Google Scholar 

  89. D’Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43:582–592

    Article  PubMed  Google Scholar 

  90. Minagawa S, Yoshida M, Araya J, Hara H, Imai H, Kuwano K (2020) Regulated necrosis in pulmonary disease. A focus on necroptosis and ferroptosis. Am J Respir Cell Mol Biol 62:554–562

    Article  CAS  PubMed  Google Scholar 

  91. Yuan J, Amin P, Ofengeim D (2019) Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci 20:19–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Faust H, Mangalmurti NS (2020) Collateral damage: necroptosis in the development of lung injury. Am J Physiol-Lung Cell Mole Physiol 318:L215–L225

    Article  CAS  Google Scholar 

  93. Gao S, Griffin CT (2021) RIPK3 modulates growth factor receptor expression in endothelial cells to support angiogenesis. Angiogenesis 24:519–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhou H, Wang J, Zhu P, Hu S, Ren J (2018) Ripk3 regulates cardiac microvascular reperfusion injury: The role of IP3R-dependent calcium overload, XO-mediated oxidative stress and F-action/filopodia-based cellular migration. Cell Signal 45:12–22

    Article  CAS  PubMed  Google Scholar 

  95. Shotland AM, Fontenot AP, McKee AS (2021) Pulmonary macrophage cell death in lung health and disease. Am J Respir Cell Mol Biol 64:547–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fan EKY, Fan J (2018) Regulation of alveolar macrophage death in acute lung inflammation. Respir Res 19:50

    Article  PubMed  PubMed Central  Google Scholar 

  97. Han CH, Guan ZB, Zhang PX, Fang HL, Li L, Zhang HM et al (2018) Oxidative stress induced necroptosis activation is involved in the pathogenesis of hyperoxic acute lung injury. Biochem Biophys Res Commun 495:2178–2183

    Article  CAS  PubMed  Google Scholar 

  98. Syed MA, Shah D, Das P, Andersson S, Pryhuber G, Bhandari V (2019) TREM-1 attenuates RIPK3-mediated necroptosis in hyperoxia-induced lung injury in neonatal mice. Am J Respir Cell Mol Biol 60:308–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hsiao C-C, Lin H-C, Chang Y-J, Yang S-P, Tsao L-Y, Lee C-H et al (2019) Intravenous fish oil containing lipid emulsion attenuates inflammatory cytokines and the development of bronchopulmonary dysplasia in very premature infants: a double-blind, randomized controlled trial. Clin Nutr 38:1045–1052

    Article  CAS  PubMed  Google Scholar 

  100. Hirani D, Alvira CM, Danopoulos S, Milla C, Donato M, Tian L et al (2022) Macrophage-derived IL-6 trans-signalling as a novel target in the pathogenesis of bronchopulmonary dysplasia. Eur Respir J 59:2002248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chetty A, Cao G-J, Manzo N, Nielsen HC, Waxman A (2008) The role of IL-6 and IL-11 in hyperoxic injury in developing lung. Pediatr Pulmonol 43:297–304

    Article  PubMed  Google Scholar 

  102. Lv S, Han M, Yi R, Kwon S, Dai C, Wang R (2014) Anti-TNF-α therapy for patients with sepsis: a systematic meta-analysis. Int J Clin Pract 68:520–528

    Article  CAS  PubMed  Google Scholar 

  103. Ehrhardt H, Pritzke T, Oak P, Kossert M, Biebach L, Förster K et al (2016) Absence of TNF-α enhances inflammatory response in the newborn lung undergoing mechanical ventilation. Am J Physiol Lung Cell Mol Physiol 310:L909-918

    Article  PubMed  PubMed Central  Google Scholar 

  104. Chen Z (2021) CCR5 signaling promotes lipopolysaccharide-induced macrophage recruitment and alveolar developmental arrest. Cell Death Dis 12:184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X (2021) Pyroptosis: mechanisms and diseases. Sig Transduct Target Ther 6:128

    Article  Google Scholar 

  106. Chen Z, Xie X, Jiang N, Li J, Shen L, Zhang Y (2021) CCR5 signaling promotes lipopolysaccharide-induced macrophage recruitment and alveolar developmental arrest. Cell Death Dis 12:184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Liu Z, Wang C, Yang J, Chen Y, Zhou B, Abbott DW et al (2020) Caspase-1 engages full-length gasdermin D through two distinct interfaces that mediate caspase recruitment and substrate cleavage. Immunity 53:106-114.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Xia X, Wang X, Cheng Z, Qin W, Lei L, Jiang J et al (2019) The role of pyroptosis in cancer: pro-cancer or pro-“host”? Cell Death Dis 10:650

    Article  PubMed  PubMed Central  Google Scholar 

  109. Swanson KV, Deng M, Ting JP-Y (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19:477–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Toldo S, Mauro AG, Cutter Z, Abbate A (2018) Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury. Am J Physiol-Heart Circ Physiol 315:H1553–H1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nadeau-Vallée M, Chin P-Y, Belarbi L, Brien M-È, Pundir S, Berryer MH et al (2017) Antenatal suppression of IL-1 protects against inflammation-induced fetal injury and improves neonatal and developmental outcomes in mice. J Immunol 198:2047–2062

    Google Scholar 

  112. Cheng KT, Xiong S, Ye Z, Hong Z, Di A, Tsang KM et al (2017) Caspase-11–mediated endothelial pyroptosis underlies endotoxemia-induced lung injury. J Clin Investig 127:4124–4135

    Article  PubMed  PubMed Central  Google Scholar 

  113. Dapaah-Siakwan F, Zambrano R, Luo S, Duncan MR, Kerr N, Donda K et al (2019) Caspase-1 inhibition attenuates hyperoxia-induced lung and brain injury in neonatal mice. Am J Respir Cell Mol Biol 61:341–354

    Article  CAS  PubMed  Google Scholar 

  114. Scheibel M, Klein B, Merkle H, Schulz M, Fritsch R, Greten FR et al (2010) IκBβ is an essential co-activator for LPS-induced IL-1β transcription in vivo. J Exp Med 207:2621–2630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dinarello CA (2011) Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117:3720–3732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Huai W, Zhao R, Song H, Zhao J, Zhang L, Zhang L et al (2014) Aryl hydrocarbon receptor negatively regulates NLRP3 inflammasome activity by inhibiting NLRP3 transcription. Nat Commun 5:4738

    Article  CAS  PubMed  Google Scholar 

  117. Shao B-Z, Xu Z-Q, Han B-Z, Su D-F, Liu C (2015) NLRP3 inflammasome and its inhibitors: a review. Front Pharmacol 6:262

    Article  PubMed  PubMed Central  Google Scholar 

  118. Shi J, Gao W, Shao F (2017) Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42:245–254

    Article  CAS  PubMed  Google Scholar 

  119. Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H et al (2016) Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535:153–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pan J, Zhan C, Yuan T, Wang W, Shen Y, Sun Y et al (2018) Effects and molecular mechanisms of intrauterine infection/inflammation on lung development. Respir Res 19:93

    Article  PubMed  PubMed Central  Google Scholar 

  121. Liao J, Kapadia VS, Brown LS, Cheong N, Longoria C, Mija D et al (2015) The NLRP3 inflammasome is critically involved in the development of bronchopulmonary dysplasia. Nat Commun 6:8977

    Article  CAS  PubMed  Google Scholar 

  122. Chen S, Wu Q, Zhong D, Li C, Du L (2020) Caffeine prevents hyperoxia-induced lung injury in neonatal mice through NLRP3 inflammasome and NF-κB pathway. Respir Res 21:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang Q, Ran X, He Y, Ai Q, Shi Y (2021) Acetate downregulates the activation of NLRP3 inflammasomes and attenuates lung injury in neonatal mice with bronchopulmonary dysplasia. Front Pediatr 8:595157

    Article  PubMed  PubMed Central  Google Scholar 

  124. Ozdemir R, Gokce IK, Tekin S, Cetin Taslidere A, Turgut H, Tanbek K et al (2022) The protective effects of apocynin in hyperoxic lung injury in neonatal rats. Pediatr Pulmonol 57:109–121

    Article  PubMed  Google Scholar 

  125. Tayman C, Çakır U, Akduman H, Karabulut Ş, Çağlayan M (2021) The therapeutic effect of apocynin against hyperoxy and Inflammation-Induced lung injury. Int Immunopharmacol 101:108190

    Article  CAS  PubMed  Google Scholar 

  126. Denton D, Kumar S (2019) Autophagy-dependent cell death. Cell Death Differ 26:605–616

    Article  CAS  PubMed  Google Scholar 

  127. Warburton D, Bellusci S (2019) Normal lung development needs self-eating. J Clin Investig 129:2658–2659

    Article  PubMed  PubMed Central  Google Scholar 

  128. Yeganeh B, Lee J, Ermini L, Lok I, Ackerley C, Post M (2019) Autophagy is required for lung development and morphogenesis. J Clin Investig 129:2904–2919

    Article  PubMed  PubMed Central  Google Scholar 

  129. Liao S, Sun P, Gu Y, Rao X, Zhang L, Ou-Yang Y (2019) Autophagy and pulmonary disease. Ther Adv Respir Dis 13:175346661989053

    Article  Google Scholar 

  130. Yeganeh B, Lee J, Bilodeau C, Lok I, Ermini L, Ackerley C et al (2019) Acid sphingomyelinase inhibition attenuates cell death in mechanically ventilated newborn rat lung. Am J Respir Crit Care Med 199:760–772

    Article  CAS  PubMed  Google Scholar 

  131. Bartolini D, Dallaglio K, Torquato P, Piroddi M, Galli F (2018) Nrf2-p62 autophagy pathway and its response to oxidative stress in hepatocellular carcinoma. Transl Res 193:54–71

    Article  PubMed  Google Scholar 

  132. Tang Z, Hu B, Zang F, Wang J, Zhang X, Chen H (2019) Nrf2 drives oxidative stress-induced autophagy in nucleus pulposus cells via a Keap1/Nrf2/p62 feedback loop to protect intervertebral disc from degeneration. Cell Death Dis 10:510

    Article  PubMed  PubMed Central  Google Scholar 

  133. Zhao X, Shi Y, Zhang D, Tong X, Sun Y, Xue X et al (2020) Autophagy inducer activates Nrf2-ARE pathway to attenuate aberrant alveolarization in neonatal rats with bronchopulmonary dysplasia. Life Sci 252:117662

    Article  CAS  PubMed  Google Scholar 

  134. Zhang L, Soni S, Hekimoglu E, Berkelhamer S, Çataltepe S (2020) Impaired autophagic activity contributes to the pathogenesis of bronchopulmonary dysplasia. Evidence from murine and baboon models. Am J Respir Cell Mol Biol 63:338–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Elsaie A, Menon RT, Shrestha AK, Gowda SH, Varghese NP, Barrios RJ et al (2021) Endothelial adenosine monophosphate-activated protein kinase-alpha1 deficiency potentiates hyperoxia-induced experimental bronchopulmonary dysplasia and pulmonary hypertension. Antioxidants 10:1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yadav A, Rana U, Michalkiewicz T, Teng R, Konduri GG (2020) Decreased AMP-activated protein kinase (AMPK) function and protective effect of metformin in neonatal rat pups exposed to hyperoxia lung injury.  Physiol Rep 8:e14587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Onishi M, Yamano K, Sato M, Matsuda N, Okamoto K (2021) Molecular mechanisms and physiological functions of mitophagy. EMBO J 40:e104705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Araya J, Tsubouchi K, Sato N, Ito S, Minagawa S, Hara H et al (2019) PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy 15:510–526

    Article  CAS  PubMed  Google Scholar 

  139. Zhang Z, Chen Z, Liu R, Liang Q, Peng Z, Yin S et al (2020) Bcl-2 proteins regulate mitophagy in lipopolysaccharide-induced acute lung injury via PINK1/parkin signaling pathway. Oxid Med Cell Longev 2020:1–20

    CAS  Google Scholar 

  140. Yu X, Sun Y, Cai Q, Zhao X, Liu Z, Xue X et al (2020) Hyperoxia exposure arrests alveolarization in neonatal rats via PTEN-induced putative kinase 1-Parkin and Nip3-like protein X-mediated mitophagy disorders. Int J Mol Med 46:2126–2136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wu Q, Chong L, Shao Y, Chen S, Li C (2019) Lipoxin A4 reduces hyperoxia-induced lung injury in neonatal rats through PINK1 signaling pathway. Int Immunopharmacol 73:414–423

    Article  CAS  PubMed  Google Scholar 

  142. Li D, Li Y (2020) The interaction between ferroptosis and lipid metabolism in cancer. Sig Transduct Target Ther 5:108

    Article  Google Scholar 

  143. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Li J, Cao F, Yin H, Huang Z, Lin Z, Mao N et al (2020) Ferroptosis: past, present and future. Cell Death Dis 11:88

    Article  PubMed  PubMed Central  Google Scholar 

  145. Tang D, Chen X, Kang R, Kroemer G (2021) Ferroptosis: molecular mechanisms and health implications. Cell Res 31:107–125

    Article  CAS  PubMed  Google Scholar 

  146. Moujalled D, Strasser A, Liddell JR (2021) Molecular mechanisms of cell death in neurological diseases. Cell Death Differ 28:2029–2044

    Article  PubMed  PubMed Central  Google Scholar 

  147. Chen X, Zeh HJ, Kang R, Kroemer G, Tang D (2021) Cell death in pancreatic cancer: from pathogenesis to therapy. Nat Rev Gastroenterol Hepatol 18:804–823

    Article  PubMed  Google Scholar 

  148. Seibt TM, Proneth B, Conrad M (2019) Role of GPX4 in ferroptosis and its pharmacological implication. Free Radical Biol Med 133:144–152

    Article  CAS  Google Scholar 

  149. Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G, Tang D (2020) Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol 66:89–100

    Article  CAS  PubMed  Google Scholar 

  150. Patel RM, Knezevic A, Yang J, Shenvi N, Hinkes M, Roback JD et al (2019) Enteral iron supplementation, red blood cell transfusion, and risk of bronchopulmonary dysplasia in very-low-birth-weight infants. Transfusion 59:1675–1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Qu M, Zhang H, Chen Z, Sun X, Zhu S, Nan K et al (2021) The role of ferroptosis in acute respiratory distress syndrome. Front Med 8:651552

    Article  Google Scholar 

  152. Li J, Lu K, Sun F, Tan S, Zhang X, Sheng W et al (2021) Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway. J Transl Med 19:96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Qiu Y, Wan B, Liu G, Wu Y, Chen D, Lu M et al (2020) Nrf2 protects against seawater drowning-induced acute lung injury via inhibiting ferroptosis. Respir Res 21:232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jia D, Zheng J, Zhou Y, Jia J, Ye X, Zhou B et al (2021) Ferroptosis is involved in hyperoxic lung injury in neonatal rats. J Inflamm Res 14:5393–5401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Chou H-C, Chen C-M (2022) Hyperoxia induces ferroptosis and impairs lung development in neonatal mice. Antioxidants 11:641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Song X, Zhu S, Xie Y, Liu J, Sun L, Zeng D et al (2018) JTC801 induces pH-dependent death specifically in cancer cells and slows growth of tumors in mice. Gastroenterology 154:1480–1493

    Article  CAS  PubMed  Google Scholar 

  157. Fang X, Dai E, Bai L, Liu J, Kang R, Zhao Y et al (2021) The HMGB1-AGER-STING1 pathway mediates the sterile inflammatory response to alkaliptosis. Biochem Biophys Res Commun 560:165–171

    Article  CAS  PubMed  Google Scholar 

  158. Zhu S, Liu J, Kang R, Yang M, Tang D (2021) Targeting NF-κB–dependent alkaliptosis for the treatment of venetoclax-resistant acute myeloid leukemia cells. Biochem Biophys Res Commun 562:55–61

    Article  CAS  PubMed  Google Scholar 

  159. Liu J, Kuang F, Kang R, Tang D (2020) Alkaliptosis: a new weapon for cancer therapy. Cancer Gene Ther 27:267–269

    Article  PubMed  Google Scholar 

  160. Zhang X, Yu Y, Lei H, Cai Y, Shen J, Zhu P et al (2020) The Nrf-2/HO-1 signaling axis: a ray of hope in cardiovascular diseases. Cardiol Res Pract 2020:1–9

    Article  CAS  Google Scholar 

  161. Zhang X, Ding M, Zhu P, Huang H, Zhuang Q, Shen J et al (2019) New insights into the Nrf-2/HO-1 signaling axis and its application in pediatric respiratory diseases. Oxid Med Cell Longev 2019:1–9

    Google Scholar 

  162. Bukong TN, Cho Y, Iracheta-Vellve A, Saha B, Lowe P, Adejumo A et al (2018) Abnormal neutrophil traps and impaired efferocytosis contribute to liver injury and sepsis severity after binge alcohol use. J Hepatol 69:1145–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wang M, Niu Z, Qin H, Ruan B, Zheng Y, Ning X et al (2020) Mechanical ring interfaces between adherens junction and contractile actomyosin to coordinate entotic cell-in-cell formation. Cell Rep 32:108071

    Article  CAS  PubMed  Google Scholar 

  164. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M et al (2022) Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375:1254–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kandasamy J, Rezonzew G, Jilling T, Ballinger S, Ambalavanan N (2019) Mitochondrial DNA variation modulates alveolar development in newborn mice exposed to hyperoxia. Am J Phys-Lung Cell Mole Phys 317:L740–L747

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.cn) for English language editing.

Funding

This research was supported by the National Natural Science Foundation of China (No. 82101812), the Jiangsu Commission of Health and Family Planning (No. Z2020042 and No. SFY202105), Wuxi Municipal Medical Innovation Team (No. CXTD2021013), and the Wuxi Young and Middle-aged Medical Talents Project (No. BJ2020075 and No. BJ2020079).

Author information

Authors and Affiliations

Authors

Contributions

XD and ZB were responsible for data collection and the writing of the original manuscript. XY, YM, and QZ were responsible for the editing. AC and YZ are responsible for concept development and revision. RY was responsible for concept development, review of the manuscript, revision and funding acquisition. All authors have contributed to the manuscript and approved the submitted version.

Corresponding authors

Correspondence to Ailing Chen, Renqiang Yu or Yongjun Zhang.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Bao, Z., Yang, X. et al. Molecular mechanisms of cell death in bronchopulmonary dysplasia. Apoptosis 28, 39–54 (2023). https://doi.org/10.1007/s10495-022-01791-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-022-01791-4

Keywords

Navigation