Skip to main content

Advertisement

Log in

c-Myc plays a critical role in the antileukemic activity of the Mcl-1-selective inhibitor AZD5991 in acute myeloid leukemia

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Acute myeloid leukemia (AML) is an aggressive disease with a low 5-year overall survival rate of 29.5%. Thus, more effective therapies are in need to prolong survival of AML patients. Mcl-1 is overexpressed in AML and is associated with poor prognosis, representing a promising therapeutic target. The oncoprotein c-Myc is also overexpressed in AML and is a significant prognostic factor. In addition, Mcl-1 is required for c-Myc induced AML, indicating that c-Myc-driven AML harbors a Mcl-1 dependency and co-targeting of Mcl-1 and c-Myc represents a promising strategy to eradicate AML. In this study, we investigated the role of c-Myc in the antileukemic activity of Mcl-1 selective inhibitor AZD5991 and the antileukemic activity of co-targeting of Mcl-1 and c-Myc in preclinical models of AML. We found that c-Myc protein levels negatively correlated with AZD5991 EC50s in AML cell lines and primary patient samples. AZD5991 combined with inhibition of c-Myc synergistically induced apoptosis in AML cell lines and primary patient samples, and cooperatively targeted leukemia progenitor cells. AML cells with acquired resistance to AZD5991 were resensitized to AZD5991 when c-Myc was inhibited. The combination also showed promising and synergistic antileukemic activity in vitro against AML cell lines with acquired resistance to the main chemotherapeutic drug AraC and primary AML cells derived from a patient at relapse post chemotherapy. The oncoprotein c-Myc represents a potential biomarker of AZD5991 sensitivity and inhibition of c-Myc synergistically enhances the antileukemic activity of AZD5991 against AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article or are available upon request to either Yubin Ge (gey@karmanos.org) or Guan Wang (wg10@jlu.edu.cn).

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer Statistics, 2021. CA Cancer J Clin 71:7–33

    Article  PubMed  Google Scholar 

  2. Kornblau SM, Qutub A, Yao H et al (2013) Proteomic profiling identifies distinct protein patterns in acute myelogenous leukemia CD34 + CD38- stem-like cells. PLoS ONE 8:e78453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Yoshimoto G, Miyamoto T, Jabbarzadeh-Tabrizi S et al (2009) FLT3-ITD up-regulates MCL-1 to promote survival of stem cells in acute myeloid leukemia via FLT3-ITD-specific STAT5 activation. Blood 114:5034–5043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:pl1

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cerami E, Gao J, Dogrusoz U et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404

    Article  PubMed  Google Scholar 

  6. Glaser SP, Lee EF, Trounson E et al (2012) Anti-apoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes Dev 26:120–125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Tron AE, Belmonte MA, Adam A et al (2018) Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat Commun 9:5341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Madden SK, de Araujo AD, Gerhardt M, Fairlie DP, Mason JM (2021) Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. Mol Cancer 20:3

    Article  PubMed  PubMed Central  Google Scholar 

  9. Delgado MD, Albajar M, Gomez-Casares MT, Batlle A, Leon J (2013) MYC oncogene in myeloid neoplasias. Clin Transl Oncol 15:87–94

    Article  PubMed  CAS  Google Scholar 

  10. Patel JH, Loboda AP, Showe MK, Showe LC, McMahon SB (2004) Analysis of genomic targets reveals complex functions of MYC. Nat Rev Cancer 4:562–568

    Article  PubMed  CAS  Google Scholar 

  11. Eilers M, Eisenman RN (2008) Myc’s broad reach. Genes Dev 22:2755–2766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Dhanasekaran R, Deutzmann A, Mahauad-Fernandez WD, Hansen AS, Gouw AM, Felsher DW (2022) The MYC oncogene - the grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol 19:23-36

  13. Luo H, Li Q, O’Neal J, Kreisel F, Le Beau MM, Tomasson MH (2005) c-Myc rapidly induces acute myeloid leukemia in mice without evidence of lymphoma-associated antiapoptotic mutations. Blood 106:2452–2461

    Article  PubMed  CAS  Google Scholar 

  14. Salvatori B, Iosue I, Djodji Damas N et al (2011) Critical Role of c-Myc in Acute Myeloid Leukemia Involving Direct Regulation of miR-26a and Histone Methyltransferase EZH2. Genes Cancer 2:585–592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ohanian M, Rozovski U, Kanagal-Shamanna R et al (2019) MYC protein expression is an important prognostic factor in acute myeloid leukemia. Leuk Lymphoma 60:37–48

    Article  PubMed  CAS  Google Scholar 

  16. Labisso WL, Wirth M, Stojanovic N et al (2012) MYC directs transcription of MCL1 and eIF4E genes to control sensitivity of gastric cancer cells toward HDAC inhibitors. Cell Cycle 11:1593–1602

    Article  PubMed  CAS  Google Scholar 

  17. Kelly GL, Grabow S, Glaser SP et al (2014) Targeting of MCL-1 kills MYC-driven mouse and human lymphomas even when they bear mutations in p53. Genes Dev 28:58–70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lee KM, Giltnane JM, Balko JM et al (2017) MYC and MCL1 Cooperatively Promote Chemotherapy-Resistant Breast Cancer Stem Cells via Regulation of Mitochondrial Oxidative Phosphorylation. Cell Metab 26:633–647e637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wei AH, Roberts AW, Spencer A et al (2020) Targeting MCL-1 in hematologic malignancies: Rationale and progress. Blood Rev 44:100672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Xiang Z, Luo H, Payton JE et al (2010) Mcl1 haploinsufficiency protects mice from Myc-induced acute myeloid leukemia. J Clin Invest 120:2109–2118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Uphoff CC, Drexler HG (2005) Detection of mycoplasma contaminations. Methods Mol Biol 290:13–23

    PubMed  CAS  Google Scholar 

  22. Qi W, Xie C, Li C et al (2014) CHK1 plays a critical role in the anti-leukemic activity of the wee1 inhibitor MK-1775 in acute myeloid leukemia cells. J Hematol Oncol 7:53

    Article  PubMed  PubMed Central  Google Scholar 

  23. Qiao X, Ma J, Knight T et al (2021) The combination of CUDC-907 and gilteritinib shows promising in vitro and in vivo antileukemic activity against FLT3-ITD AML. Blood Cancer J 11:111

    Article  PubMed  PubMed Central  Google Scholar 

  24. Niu X, Wang G, Wang Y et al (2014) Acute myeloid leukemia cells harboring MLL fusion genes or with the acute promyelocytic leukemia phenotype are sensitive to the Bcl-2-selective inhibitor ABT-199. Leukemia 28:1557–1560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Taub JW, Matherly LH, Stout ML, Buck SA, Gurney JG, Ravindranath Y (1996) Enhanced metabolism of 1-beta-D-arabinofuranosylcytosine in Down syndrome cells: a contributing factor to the superior event free survival of Down syndrome children with acute myeloid leukemia. Blood 87:3395–3403

    Article  PubMed  CAS  Google Scholar 

  26. Quentmeier H, Zaborski M, Drexler HG (1997) The human bladder carcinoma cell line 5637 constitutively secretes functional cytokines. Leuk Res 21:343–350

    Article  PubMed  CAS  Google Scholar 

  27. Ge Y, Stout ML, Tatman DA et al (2005) GATA1, cytidine deaminase, and the high cure rate of Down syndrome children with acute megakaryocytic leukemia. J Natl Cancer Inst 97:226–231

    Article  PubMed  CAS  Google Scholar 

  28. Ge Y, Dombkowski AA, LaFiura KM et al (2006) Differential gene expression, GATA1 target genes, and the chemotherapy sensitivity of Down syndrome megakaryocytic leukemia. Blood 107:1570–1581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Xie C, Edwards H, Xu X et al (2010) Mechanisms of synergistic antileukemic interactions between valproic acid and cytarabine in pediatric acute myeloid leukemia. Clin Cancer Res 16:5499–5510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Edwards H, Xie C, LaFiura KM et al (2009) RUNX1 regulates phosphoinositide 3-kinase/AKT pathway: role in chemotherapy sensitivity in acute megakaryocytic leukemia. Blood 114:2744–2752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:621–681

    Article  PubMed  CAS  Google Scholar 

  32. Xie C, Drenberg C, Edwards H et al (2013) Panobinostat enhances cytarabine and daunorubicin sensitivities in AML cells through suppressing the expression of BRCA1, CHK1, and Rad51. PLoS ONE 8:e79106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Xie C, Edwards H, Lograsso SB et al (2012) Valproic acid synergistically enhances the cytotoxicity of clofarabine in pediatric acute myeloid leukemia cells. Pediatr Blood Cancer 59:1245–1251

    Article  PubMed  PubMed Central  Google Scholar 

  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  35. Adomavicius T, Guaita M, Zhou Y et al (2019) The structural basis of translational control by eIF2 phosphorylation. Nat Commun 10:2136

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rabouw HH, Langereis MA, Anand AA et al (2019) Small molecule ISRIB suppresses the integrated stress response within a defined window of activation. Proc Natl Acad Sci U S A 116:2097–2102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hormi M, Birsen R, Belhadj M et al (2020) Pairing MCL-1 inhibition with venetoclax improves therapeutic efficiency of BH3-mimetics in AML. Eur J Haematol 105:588–596

    Article  PubMed  CAS  Google Scholar 

  38. Carter BZ, Mak PY, Tao W et al (2022) Targeting MCL-1 dysregulates cell metabolism and leukemia-stroma interactions and resensitizes acute myeloid leukemia to BCL-2 inhibition. Haematologica 107:58-76

  39. Luedtke DA, Niu X, Pan Y et al (2017) Inhibition of Mcl-1 enhances cell death induced by the Bcl-2-selective inhibitor ABT-199 in acute myeloid leukemia cells. Signal Transduct Target Ther 2:17012

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gores GJ, Kaufmann SH (2012) Selectively targeting Mcl-1 for the treatment of acute myelogenous leukemia and solid tumors. Genes Dev 26:305–311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Zhong Q, Gao W, Du F, Wang X (2005) Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 121:1085–1095

    Article  PubMed  CAS  Google Scholar 

  42. Goetzman ES, Prochownik EV (2018) The Role for Myc in Coordinating Glycolysis, Oxidative Phosphorylation, Glutaminolysis, and Fatty Acid Metabolism in Normal and Neoplastic Tissues. Front Endocrinol (Lausanne) 9:129

    Article  Google Scholar 

  43. Perciavalle RM, Stewart DP, Koss B et al (2012) Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat Cell Biol 14:575–583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Chen G, Magis AT, Xu K et al (2018) Targeting Mcl-1 enhances DNA replication stress sensitivity to cancer therapy. J Clin Invest 128:500–516

    Article  PubMed  Google Scholar 

  45. Jamil S, Stoica C, Hackett TL, Duronio V (2010) MCL-1 localizes to sites of DNA damage and regulates DNA damage response. Cell Cycle 9:2843–2855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ganesan S (2011) MYC, PARP1, and chemoresistance: BIN there, done that? Sci Signal 4:pe15

    Article  PubMed  Google Scholar 

  47. Niu X, Zhao J, Ma J et al (2016) Binding of Released Bim to Mcl-1 is a Mechanism of Intrinsic Resistance to ABT-199 which can be Overcome by Combination with Daunorubicin or Cytarabine in AML Cells. Clin Cancer Res 22:4440–4451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Bose P, Gandhi V, Konopleva M (2017) Pathways and mechanisms of venetoclax resistance. Leuk Lymphoma 58:1–17

    Article  PubMed  Google Scholar 

  49. Soucek L, Helmer-Citterich M, Sacco A, Jucker R, Cesareni G, Nasi S (1998) Design and properties of a Myc derivative that efficiently homodimerizes. Oncogene 17:2463–2472

    Article  PubMed  CAS  Google Scholar 

  50. Cidado J, Boiko S, Proia T et al (2020) AZD4573 Is a Highly Selective CDK9 Inhibitor That Suppresses MCL-1 and Induces Apoptosis in Hematologic Cancer Cells. Clin Cancer Res 26:922–934

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (NSFC81800154 to Guan Wang), Children’s Foundation, LaFontaine Family/U Can CerVive Foundation, Kids Without Cancer, Decerchio/Guisewite Family, Justin’s Gift, Elana Fund, Ginopolis/Karmanos Endowment, the Ring Screw Textron Endowed Chair for Pediatric Cancer Research. The funders had no role in study design, data collection, analysis and interpretation of data, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Yubin Ge; Formal analysis, Shuang Liu, Xinan Qiao, Shuangshuang Wu, Yuqin Gai, Yongwei Su, Holly Edwards, Yue Wang, Jeffrey W. Taub, Guan Wang and Yubin Ge; Funding acquisition, Jeffrey W. Taub, Guan Wang and Yubin Ge; Investiga-tion, Shuang Liu, Xinan Qiao, Shuangshuang Wu and Yongwei Su; Methodology, Yubin Ge; Pro-ject administration, Guan Wang and Yubin Ge; Resources, Yue Wang and Hai Lin; Supervision, Guan Wang and Yubin Ge; Visualization, Shuang Liu, Holly Edwards, Guan Wang and Yubin Ge; Writing – original draft, Holly Edwards and Yubin Ge; Writing – review & editing, Shuang Liu, Xinan Qiao, Shuangshuang Wu, Yuqin Gai, Yongwei Su, Holly Edwards, Yue Wang, Hai Lin, Jeffrey W. Taub, Guan Wang and Yubin Ge. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Guan Wang or Yubin Ge.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests or other competing interests.

Ethical approval

Diagnostic blast samples were obtained from the First Hospital of Jilin University, Changchun, China. Normal peripheral blood mononuclear cells (PBMCs) were donated by healthy individuals. Written informed consent was provided according to the Declaration of Helsinki. The study was approved by the Human Ethics Committee of the First Hospital of Jilin University (Ethical code # 2019 − 128).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Qiao, X., Wu, S. et al. c-Myc plays a critical role in the antileukemic activity of the Mcl-1-selective inhibitor AZD5991 in acute myeloid leukemia. Apoptosis 27, 913–928 (2022). https://doi.org/10.1007/s10495-022-01756-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-022-01756-7

Keywords

Navigation