Skip to main content
Log in

SKI knockdown suppresses apoptosis and extracellular matrix degradation of nucleus pulposus cells via inhibition of the Wnt/β-catenin pathway and ameliorates disc degeneration

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

This study aimed to determine the effects of SKI on interleukin (IL)-1β-induced apoptosis of nucleus pulposus (NP) cells, intervertebral disc degeneration (IDD), and the Wnt signaling pathway. NP tissue specimens of different Pfirrmann grades (II–V) were collected from patients with different grades of IDD. Real-time polymerase chain reaction and western blotting were used to compare SKI mRNA and protein expression in NP tissues from patients. Using the IL-1β-induced IDD model, NP cells were infected with lentivirus-coated si-SKI to downregulate the expression of SKI and treated with LiCl to evaluate the involvement of the Wnt/β-catenin signaling pathway. Western blotting, immunofluorescence, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were used to detect NP cell apoptosis, extracellular matrix (ECM) metabolism, and related protein expression changes in the Wnt/β-catenin signaling pathway. To investigate the role of SKI in vivo, a rat IDD model was established by needle puncture of the intervertebral disc. Rats were injected with lentivirus-coated si-SKI and evaluated by magnetic resonance imaging (MRI), and hematoxylin and eosin (HE) and safranin O staining. SKI expression positively correlated with the severity of human IDD. In the IL-1β-induced NP cell degeneration model, SKI expression increased significantly and reached a peak at 24 h. SKI knockdown protected against IL-1β-induced NP cell apoptosis and ECM degradation. LiCl treatment reversed the protective effects of si-SKI on NP cells. Furthermore, lentivirus-coated si-SKI injection partially reversed the NP tissue damage in the IDD model in vivo. SKI knockdown reduced NP cell apoptosis and ECM degradation by inhibiting the Wnt/β-catenin signaling pathway, ultimately protecting against IDD. Therefore, SKI may be an effective target for IDD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Meucci RD, Fassa AG, Faria NM (2015) Prevalence of chronic low back pain: systematic review. Rev Saude Publica 49:1

    PubMed Central  Google Scholar 

  2. James SL, Abate D, Abate KH et al (2018) Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392(10159):1789–1858

    Google Scholar 

  3. James SL, Abate D, Abate KH et al (2015) Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386(9995):743–800

    Google Scholar 

  4. Takatalo J, Karppinen J, Niinimäki J et al (2011) Does lumbar disc degeneration on magnetic resonance imaging associate with low back symptom severity in young Finnish adults? Spine (Phila Pa 1976) 36(25):2180–2189

    Google Scholar 

  5. Roberts S, Evans H, Trivedi J et al (2006) Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am 88(Suppl 2):10–14

    PubMed  Google Scholar 

  6. Vergroesen PP, Kingma I, Emanuel KS et al (2015) Mechanics and biology in intervertebral disc degeneration: a vicious circle. Osteoarthr Cartil 23(7):1057–1070

    Google Scholar 

  7. Fujita N, Chiba K, Shapiro IM et al (2012) HIF-1α and HIF-2α degradation is differentially regulated in nucleus pulposus cells of the intervertebral disc. J Bone Miner Res 27(2):401–412

    CAS  PubMed  Google Scholar 

  8. Xiang Q, Kang L, Wang J et al (2020) CircRNA-CIDN mitigated compression loading-induced damage in human nucleus pulposus cells via miR-34a-5p/SIRT1 axis. EBioMedicine 53:102679

    PubMed  PubMed Central  Google Scholar 

  9. He R, Wang Z, Cui M et al (2021) HIF1A Alleviates compression-induced apoptosis of nucleus pulposus derived stem cells via upregulating autophagy. Autophagy 17:1–23

    PubMed  PubMed Central  Google Scholar 

  10. Long J, Wang X, Du X et al (2019) JAG2/Notch2 inhibits intervertebral disc degeneration by modulating cell proliferation, apoptosis, and extracellular matrix. Arthritis Res Ther 21(1):213

    PubMed  PubMed Central  Google Scholar 

  11. Kadow T, Sowa G, Vo N et al (2015) Molecular basis of intervertebral disc degeneration and herniations: what are the important translational questions? Clin Orthop Relat Res 473(6):1903–1912

    PubMed  Google Scholar 

  12. Chen J, Xie JJ, Jin MY et al (2018) Sirt6 overexpression suppresses senescence and apoptosis of nucleus pulposus cells by inducing autophagy in a model of intervertebral disc degeneration. Cell Death Dis 9(2):56

    PubMed  PubMed Central  Google Scholar 

  13. Zeng Y, Danielson KG, Albert TJ et al (2007) HIF-1 alpha is a regulator of galectin-3 expression in the intervertebral disc. J Bone Miner Res 22(12):1851–1861

    CAS  PubMed  Google Scholar 

  14. Che H, Li J, Li Y et al (2020) p16 deficiency attenuates intervertebral disc degeneration by adjusting oxidative stress and nucleus pulposus cell cycle. Elife. https://doi.org/10.7554/eLife.52570

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bonnon C, Atanasoski S (2012) c-Ski in health and disease. Cell Tissue Res 347(1):51–64

    CAS  PubMed  Google Scholar 

  16. Liao HY, Da CM, Wu ZL et al (2021) Ski: double roles in cancers. Clin Biochem 87:1–12

    CAS  PubMed  Google Scholar 

  17. Landry N, Kavosh MS, Filomeno KL et al (2018) Ski drives an acute increase in MMP-9 gene expression and release in primary cardiac myofibroblasts. Physiol Rep 6(22):13897

    Google Scholar 

  18. Zhang C, Zhang Y, Zhu H et al (2018) MiR-34a/miR-93 target c-Ski to modulate the proliferaton of rat cardiac fibroblasts and extracellular matrix deposition in vivo and in vitro. Cell Signal 46:145–153

    PubMed  Google Scholar 

  19. Xu H, Sun F, Li X et al (2018) Down-regulation of miR-23a inhibits high glucose-induced EMT and renal fibrogenesis by up-regulation of SnoN. Hum Cell 31(1):22–32

    PubMed  Google Scholar 

  20. Fukasawa H, Yamamoto T, Togawa A et al (2006) Ubiquitin-dependent degradation of SnoN and Ski is increased in renal fibrosis induced by obstructive injury. Kidney Int 69(10):1733–1740

    CAS  PubMed  Google Scholar 

  21. Zhao X, Wei Z, Li D et al (2019) Glucocorticoid enhanced the expression of ski in osteonecrosis of femoral head: the effect on adipogenesis of rabbit BMSCs. Calcif Tissue Int 105(5):506–517

    CAS  PubMed  Google Scholar 

  22. Kim KO, Sampson ER, Maynard RD et al (2012) Ski inhibits TGF-β/phospho-Smad3 signaling and accelerates hypertrophic differentiation in chondrocytes. J Cell Biochem 113(6):2156–2166

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mohanty S, Pinelli R, Pricop P et al (2019) Chondrocyte-like nested cells in the aged intervertebral disc are late-stage nucleus pulposus cells. Aging Cell 18(5):e13006

    PubMed  PubMed Central  Google Scholar 

  24. Wu Z, Xie Q, Liu T et al (2021) Role of the Wnt pathway in the formation, development, and degeneration of intervertebral discs. Pathology 220:153366

    Google Scholar 

  25. Zhan S, Wang K, Song Y et al (2019) Long non-coding RNA HOTAIR modulates intervertebral disc degenerative changes via Wnt/β-catenin pathway. Arthritis Res Ther 21(1):201

    PubMed  PubMed Central  Google Scholar 

  26. Chen D, Xu W, Bales E et al (2003) SKI activates Wnt/beta-catenin signaling in human melanoma. Cancer Res 63(20):6626–6634

    CAS  PubMed  Google Scholar 

  27. Pfirrmann CW, Metzdorf A, Zanetti M et al (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 26(17):1873–1878

    CAS  Google Scholar 

  28. Urrutia J, Besa P, Campos M et al (2016) The Pfirrmann classification of lumbar intervertebral disc degeneration: an independent inter- and intra-observer agreement assessment. Eur Spine J 25(9):2728–2733

    PubMed  Google Scholar 

  29. Han B, Zhu K, Li FC et al (2008) A simple disc degeneration model induced by percutaneous needle puncture in the rat tail. Spine (Phila Pa 1976) 33(18):1925–1934

    Google Scholar 

  30. Liu Y, Lin J, Wu X et al (2019) Aspirin-mediated attenuation of intervertebral disc degeneration by ameliorating reactive oxygen species in vivo and in vitro. Oxid Med Cell Longev 2019:7189854

    PubMed  PubMed Central  Google Scholar 

  31. Wang Y, Che M, Xin J et al (2020) The role of IL-1β and TNF-α in intervertebral disc degeneration. Biomed Pharmacother 131:110660

    CAS  PubMed  Google Scholar 

  32. Rousseau MA, Ulrich JA, Bass EC et al (2007) Stab incision for inducing intervertebral disc degeneration in the rat. Spine (Phila Pa 1976) 32(1):17–24

    Google Scholar 

  33. Zhao CQ, Wang LM, Jiang LS et al (2007) The cell biology of intervertebral disc aging and degeneration. Ageing Res Rev 6(3):247–261

    PubMed  Google Scholar 

  34. Dowdell J, Erwin M, Choma T et al (2017) Intervertebral disk degeneration and repair. Neurosurgery 80(3S):S46–S54

    PubMed  PubMed Central  Google Scholar 

  35. Li Z, Shao Z, Chen S et al (2020) TIGAR impedes compression-induced intervertebral disc degeneration by suppressing nucleus pulposus cell apoptosis and autophagy. J Cell Physiol 235(2):1780–1794

    CAS  PubMed  Google Scholar 

  36. Lin J, Chen J, Zhang Z et al (2019) Luteoloside inhibits IL-1β-induced apoptosis and catabolism in nucleus pulposus cells and ameliorates intervertebral disk degeneration. Front Pharmacol 10:868

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Xi Y, Ma J, Chen Y (2020) PTEN promotes intervertebral disc degeneration by regulating nucleus pulposus cell behaviors. Cell Biol Int 44(2):583–592

    CAS  PubMed  Google Scholar 

  38. Rashidian J, Le Scolan E, Ji X et al (2015) Ski regulates Hippo and TAZ signaling to suppress breast cancer progression. Sci Signal 8(363):a14

    Google Scholar 

  39. Porter LF, Saptarshi N, Fang Y et al (2019) Whole-genome methylation profiling of the retinal pigment epithelium of individuals with age-related macular degeneration reveals differential methylation of the SKI, GTF2H4, and TNXB genes. Clin Epigenetics 11(1):6

    PubMed  PubMed Central  Google Scholar 

  40. Zeglinski MR, Davies JJ, Ghavami S et al (2016) Chronic expression of Ski induces apoptosis and represses autophagy in cardiac myofibroblasts. Biochim Biophys Acta 1863(6 Pt A):1261–1268

    CAS  PubMed  Google Scholar 

  41. Kiyono K, Suzuki HI, Morishita Y et al (2009) c-Ski overexpression promotes tumor growth and angiogenesis through inhibition of transforming growth factor-beta signaling in diffuse-type gastric carcinoma. Cancer Sci 100(10):1809–1816

    CAS  PubMed  Google Scholar 

  42. Fukuchi M, Nakajima M, Fukai Y et al (2004) Increased expression of c-Ski as a co-repressor in transforming growth factor-beta signaling correlates with progression of esophageal squamous cell carcinoma. Int J Cancer 108(6):818–824

    CAS  PubMed  Google Scholar 

  43. Xie M, Wu X, Zhang J et al (2017) Ski regulates Smads and TAZ signaling to suppress lung cancer progression. Mol Carcinog 56(10):2178–2189

    CAS  PubMed  Google Scholar 

  44. Wang P, Chen Z, Meng ZQ et al (2009) Dual role of Ski in pancreatic cancer cells: tumor-promoting versus metastasis-suppressive function. Carcinogenesis 30(9):1497–1506

    CAS  PubMed  Google Scholar 

  45. Vo BT, Cody B, Cao Y et al (2012) Differential role of Sloan-Kettering Institute (Ski) protein in Nodal and transforming growth factor-beta (TGF-β)-induced Smad signaling in prostate cancer cells. Carcinogenesis 33(11):2054–2064

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim H, Yamanouchi K, Nishihara M (2006) Expression of ski in the granulosa cells of atretic follicles in the rat ovary. J Reprod Dev 52(6):715–721

    CAS  PubMed  Google Scholar 

  47. Ruiz-Fernández C, Francisco V, Pino J et al (2019) Molecular relationships among obesity, inflammation and intervertebral disc degeneration: are adipokines the common link? Int J Mol Sci 20(8):2030

    PubMed Central  Google Scholar 

  48. Wang X, Zou M, Li J et al (2018) LncRNA H19 targets miR-22 to modulate H(2) O(2) -induced deregulation in nucleus pulposus cell senescence, proliferation, and ECM synthesis through Wnt signaling. J Cell Biochem 119(6):4990–5002

    CAS  PubMed  Google Scholar 

  49. Chen J, Jia YS, Liu GZ et al (2017) Role of LncRNA TUG1 in intervertebral disc degeneration and nucleus pulposus cells via regulating Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun 491(3):668–674

    CAS  PubMed  Google Scholar 

  50. Ye S, Wang J, Yang S et al (2011) Specific inhibitory protein Dkk-1 blocking Wnt/β-catenin signaling pathway improve protectives effect on the extracellular matrix. J Huazhong Univ Sci Technol Med Sci 31(5):657

    CAS  Google Scholar 

  51. Xie H, Jing Y, Xia J et al (2016) Aquaporin 3 protects against lumbar intervertebral disc degeneration via the Wnt/β-catenin pathway. Int J Mol Med 37(3):859–864

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Editage (www.editage.cn) for English language editing.

Funding

This work was co-funded by the National Natural Science Foundation of China (No. 31960175).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Z-LW, H-HZ, and Y-JC; methodology: G-ZZ; software: Q-QX; writing—original draft preparation: Z-LW and G-ZZ; writing—review and editing: Y-JC, Q-QX, and H-HZ; visualization: Y-JC; supervision: H-HZ; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Hai-Hong Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All experimental protocols were approved by the Ethics Committee of Lanzhou University Second Hospital, and written informed consent was obtained from each patient. The animal study was reviewed and approved by the Animal Use and Care Committee of Lanzhou University Second Hospital.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Zl., Chen, Yj., Zhang, Gz. et al. SKI knockdown suppresses apoptosis and extracellular matrix degradation of nucleus pulposus cells via inhibition of the Wnt/β-catenin pathway and ameliorates disc degeneration. Apoptosis 27, 133–148 (2022). https://doi.org/10.1007/s10495-022-01707-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-022-01707-2

Keywords

Navigation