Skip to main content
Log in

Poly(ADP-ribose) polymerase inhibitor PJ34 protects against UVA-induced oxidative damage in corneal endothelium

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Fuchs endothelial corneal dystrophy (FECD) is one of the main causes for corneal endothelial blindness, which is characterized by the progressive decline of corneal endothelial cells. Poly (ADP-ribose) polymerase (PARP) was reported to be involved in cell death and apoptosis of several diseases. However, the role of PARP1 in the progression of FECD remains elusive. In the present study, we reported that UVA irradiation caused the corneal endothelial damage and corneal edema in mice, which was accompanied with the elevated activity of PARP1 and PAR. The PARP1 inhibitor PJ34 resolved the corneal edema and protected corneal endothelium from UVA-induced oxidative damage, mitochondrial dysfunction, and cell apoptosis. Mechanistically, PARP1 inhibition exerted its anti-apoptotic effects through downregulation of the phosphorylation levels of JNK1/2 and p38 MAPK and subsequently the increase of MKP-1. Our results suggest that PARP1 inhibition protects corneal endothelium from UVA-induced oxidative damage, which provides a potential alternative strategy for the therapy of FECD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

FECD:

Fuchs endothelial corneal dystrophy

CECs:

Corneal endothelial cells

ECM:

Extracellular matrix

UV:

Ultraviolet

PARP:

Poly ADP-ribose polymerase

AIF:

Apoptosis inducing factor

MKP-1:

MAPK phosphatase-1

References

  1. Ong Tone S, Kocaba V, Böhm M, Wylegala A, White TL, Jurkunas UV (2021) Fuchs endothelial corneal dystrophy: the vicious cycle of Fuchs pathogenesis. Prog Retin Eye Res 80:100863

    Article  Google Scholar 

  2. Jurkunas UV, Bitar MS, Funaki T, Azizi B (2010) Evidence of oxidative stress in the pathogenesis of fuchs endothelial corneal dystrophy. Am J Pathol 177(5):2278–2289

    Article  CAS  Google Scholar 

  3. Shoham A, Hadziahmetovic M, Dunaief JL, Mydlarski MB, Schipper HM (2008) Oxidative stress in diseases of the human cornea. Free Radic Biol Med 45(8):1047–1055

    Article  CAS  Google Scholar 

  4. Borderie VM, Baudrimont M, Vallée A, Ereau TL, Gray F, Laroche L (2000) Corneal endothelial cell apoptosis in patients with Fuchs’ dystrophy. Invest Ophthalmol Vis Sci 41(9):2501–2505

    CAS  PubMed  Google Scholar 

  5. Li QJ, Ashraf MF, Shen DF, Green WR, Stark WJ, Chan CC, O’Brien TP (2001) The role of apoptosis in the pathogenesis of Fuchs endothelial dystrophy of the cornea. Arch Ophthalmol 119(11):1597–1604

    Article  CAS  Google Scholar 

  6. Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AM (2007) Mechanisms of cell death in oxidative stress. Antioxid Redox Signal 9(1):49–89

    Article  CAS  Google Scholar 

  7. Alemasova EE, Lavrik OI (2019) Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins. Nucleic Acids Res 47(8):3811–3827

    Article  CAS  Google Scholar 

  8. Luo X, Kraus WL (2012) On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev 26(5):417–432

    Article  Google Scholar 

  9. Hou WH, Chen SH, Yu X (2019) Poly-ADP ribosylation in DNA damage response and cancer therapy. Mutat Res 780:82–91

    Article  CAS  Google Scholar 

  10. Lee Y, Kang HC, Lee BD, Lee YI, Kim YP, Shin JH (2014) Poly (ADP-ribose) in the pathogenesis of Parkinson’s disease. BMB Rep 47(8):424–432

    Article  Google Scholar 

  11. Fatokun AA, Dawson VL, Dawson TM (2014) Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol 171(8):2000–2016

    Article  CAS  Google Scholar 

  12. Liu C, Vyas A, Kassab MA, Singh AK, Yu X (2017) The role of poly ADP-ribosylation in the first wave of DNA damage response. Nucleic Acids Res 45(14):8129–8141

    Article  CAS  Google Scholar 

  13. Schuhwerk H, Atteya R, Siniuk K, Wang ZQ (2017) PARPing for balance in the homeostasis of poly(ADP-ribosyl)ation. Semin Cell Dev Biol 63:81–91

    Article  CAS  Google Scholar 

  14. Abdelkarim GE, Gertz K, Harms C, Katchanov J, Dirnagl U, Szabó C, Endres M (2001) Protective effects of PJ34, a novel, potent inhibitor of poly(ADP-ribose) polymerase (PARP) in in vitro and in vivo models of stroke. Int J Mol Med 7(3):255–260

    CAS  PubMed  Google Scholar 

  15. Jagtap P, Szabó C (2005) Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov 4(5):421–440

    Article  CAS  Google Scholar 

  16. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434(7035):913–917

    Article  CAS  Google Scholar 

  17. Andrabi SA, Kim NS, Yu SW, Wang H, Koh DW, Sasaki M, Klaus JA, Otsuka T, Zhang Z, Koehler RC, Hurn PD, Poirier GG, Dawson VL, Dawson TM (2006) Poly(ADP-ribose) (PAR) polymer is a death signal. Proc Natl Acad Sci USA 103(48):18308–18313

    Article  CAS  Google Scholar 

  18. Liu C, Miyajima T, Melangath G, Miyai T, Vasanth S, Deshpande N, Kumar V, Ong Tone S, Gupta R, Zhu S, Vojnovic D, Chen Y, Rogan EG, Mondal B, Zahid M (2020) Jurkunas UV (2006) Ultraviolet A light induces DNA damage and estrogen-DNA adducts in Fuchs endothelial corneal dystrophy causing females to be more affected. Proc Natl Acad Sci USA 117(1):573–583

    Article  CAS  Google Scholar 

  19. Krishnakumar R, Kraus WL (2010) The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 39(1):8–24

    Article  CAS  Google Scholar 

  20. Liu C, Vojnovic D, Kochevar IE, Jurkunas UV (2016) UV-A irradiation activates Nrf2-regulated antioxidant defense and induces p53/caspase3-dependent apoptosis in corneal endothelial cells. Invest Ophthalmol Vis Sci 57(4):2319–2327

    Article  CAS  Google Scholar 

  21. Poyan Mehr A, Tran MT, Ralto KM, Leaf DE, Washco V, Messmer J, Lerner A, Kher A, Kim SH, Khoury CC, Herzig SJ, Trovato ME, Simon-Tillaux N, Lynch MR, Thadhani RI, Clish CB, Khabbaz KR, Rhee EP, Waikar SS, Berg AH, Parikh SM (2018) De novo NAD(+) biosynthetic impairment in acute kidney injury in humans. Nat Med 24(9):1351–1359

    Article  CAS  Google Scholar 

  22. White TL, Deshpande N, Kumar V, Gauthier AG, Jurkunas UV (2021) Cell cycle re-entry and arrest in G2/M phase induces senescence and fibrosis in fuchs endothelial corneal dystrophy. Free Radic Biol Med 164:34–43

    Article  CAS  Google Scholar 

  23. Katikireddy KR, White TL, Miyajima T, Vasanth S, Raoof D, Chen Y, Price MO, Price FW, Jurkunas UV (2018) NQO1 downregulation potentiates menadione-induced endothelial-mesenchymal transition during rosette formation in Fuchs endothelial corneal dystrophy. Free Radic Biol Med 116:19–30

    Article  CAS  Google Scholar 

  24. Halilovic A, Schmedt T, Benischke AS, Hamill C, Chen Y, Santos JH, Jurkunas UV (2016) Menadione-induced DNA damage leads to mitochondrial dysfunction and fragmentation during rosette formation in fuchs endothelial corneal dystrophy. Antioxid Redox Signal 18:1072–1083

    Article  Google Scholar 

  25. Haydari MN, Perron MC, Laprise S, Roy O, Cameron JD, Proulx S, Brunette I (2012) A short-term in vivo experimental model for Fuchs endothelial corneal dystrophy. Invest Ophthalmol Vis Sci 10:6343–6354

    Article  Google Scholar 

  26. Liu C, Miyajima T, Melangath G, Miyai T, Vasanth S, Deshpande N, Kumar V, Ong Tone S, Gupta R, Zhu S, Vojnovic D, Chen Y, Rogan EG, Mondal B, Zahid M, Jurkunas UV (2020) Ultraviolet A light induces DNA damage and estrogen-DNA adducts in Fuchs endothelial corneal dystrophy causing females to be more affected. Proc Natl Acad Sci USA 117:573–583

    Article  CAS  Google Scholar 

  27. Ridley AJ, Whiteside JR, McMillan TJ, Allinson SL (2009) Cellular and sub-cellular responses to UVA in relation to carcinogenesis. Int J Radiat Biol 85:177–195

    Article  CAS  Google Scholar 

  28. Vile GF, Tyrrell RM (1995) UVA radiation-induced oxidative damage to lipids and proteins in vitro and in human skin fibroblasts is dependent on iron and singlet oxygen. Free Radic Biol Med 18:721–730

    Article  CAS  Google Scholar 

  29. Santos JH, Hunakova L, Chen Y, Bortner C, Van Houten B (2003) Cell sorting experiments link persistent mitochondrial DNA damage with loss of mitochondrial membrane potential and apoptotic cell death. J Biol Chem 278:1728–1734

    Article  CAS  Google Scholar 

  30. Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 94:514–519

    Article  CAS  Google Scholar 

  31. Langelier MF, Pascal JM (2013) PARP-1 mechanism for coupling DNA damage detection to poly(ADP-ribose) synthesis. Curr Opin Struct Biol 23:134–143

    Article  CAS  Google Scholar 

  32. Bartha E, Solti I, Kereskai L, Lantos J, Plozer E, Magyar K, Szabados E, Kálai T, Hideg K, Halmosi R, Sumegi B, Toth K (2009) PARP inhibition delays transition of hypertensive cardiopathy to heart failure in spontaneously hypertensive rats. Cardiovasc Res 83:501–510

    Article  CAS  Google Scholar 

  33. Mester L, Szabo A, Atlasz T, Szabadfi K, Reglodi D, Kiss P, Racz B, Tamas A, Gallyas F Jr, Sumegi B, Hocsak E, Gabriel R, Kovacs K (2009) Protection against chronic hypoperfusion-induced retinal neurodegeneration by PARP inhibition via activation of PI-3-kinase Akt pathway and suppression of JNK and p38 MAP kinases. Neurotox Res 16:68–76

    Article  CAS  Google Scholar 

  34. Moubarak RS, Yuste VJ, Artus C, Bouharrour A, Greer PA, Menissier-de Murcia J, Susin SA (2007) Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol Cell Biol 13:4844–4862

    Article  Google Scholar 

  35. Xu Y, Huang S, Liu ZG, Han J (2006) Poly(ADP-ribose) polymerase-1 signaling to mitochondria in necrotic cell death requires RIP1/TRAF2-mediated JNK1 activation. J Biol Chem 13:8788–8795

    Article  Google Scholar 

  36. Mathieu J, Flexor M, Lanotte M, Besançon F (2008) A PARP-1/JNK1 cascade participates in the synergistic apoptotic effect of TNFalpha and all-trans retinoic acid in APL cells. Oncogene 27:3361–3370

    Article  CAS  Google Scholar 

  37. Zhang C, Du L, Sun P, Shen L, Zhu J, Pang K, Wu X (2017) Construction of tissue-engineered full-thickness cornea substitute using limbal epithelial cell-like and corneal endothelial cell-like cells derived from human embryonic stem cells. Biomaterials 124:180–194

    Article  CAS  Google Scholar 

  38. Miki T, Lehmann T, Cai H, Stolz DB, Strom SC (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23:1549–1559

    Article  CAS  Google Scholar 

  39. Inagaki E, Hatou S, Higa K, Yoshida S, Shibata S, Okano H, Tsubota K, Shimmura S (2017) Skin-derived precursors as a source of progenitors for corneal endothelial regeneration. Stem Cells Transl Med 6:788–798

    Article  CAS  Google Scholar 

  40. Ljubimov AV, Saghizadeh M (2015) Progress in corneal wound healing. Prog Retin Eye Res 49:17–45

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ph.D Qun Wang gave our work scientific suggestions.

Funding

This work was partially supported by the National Natural Science Foundation of China (81770904 and 81900834) and by the Natural Science Foundation of Shandong Province (ZR2019ZD37 and ZR2019PH110). Weiyun Shi and Qingjun Zhou were partially supported by the Taishan Scholar Program (20161059) and by the Academic Promotion Programme of Shandong First Medical University (2019PT002, 2019RC008, and 2019ZL001).

Author information

Authors and Affiliations

Authors

Contributions

XW conceived and designed the experiments; CXD, QJZ and HYD conducted the statistical analysis; DLZ, YJG and BCM performed data collection; ZYL and WYS reviewed and revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zongyi Li or Weiyun Shi.

Ethics declarations

Conflict of interest

Authors declare that no competing financial interests or conflict of interest exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Dong, C., Zhou, Q. et al. Poly(ADP-ribose) polymerase inhibitor PJ34 protects against UVA-induced oxidative damage in corneal endothelium. Apoptosis 26, 600–611 (2021). https://doi.org/10.1007/s10495-021-01690-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-021-01690-0

Keywords

Navigation