Skip to main content
Log in

Antiproliferative effect of bacterial cyclodipeptides in the HeLa line of human cervical cancer reveals multiple protein kinase targeting, including mTORC1/C2 complex inhibition in a TSC1/2-dependent manner

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Cervix adenocarcinoma rendered by human papillomavirus (HPV) integration is an aggressive cancer that occurs by dysregulation of multiple pathways, including oncogenes, proto-oncogenes, and tumor suppressors. The PI3K/Akt/mTOR pathway, which cross-talks with the Ras–ERK pathway, has been associated with cervical cancers (CC), which includes signaling pathways related to carcinoma aggressiveness, metastasis, recurrence, and drug resistance. Since bacterial cyclodipeptides (CDPs) possess cytotoxic properties in HeLa cells with inhibiting Akt/S6k phosphorylation, the mechanism of CDPs cytotoxicity involved was deepened. Results showed that the antiproliferative effect of CDPs occurred by blocking the PI3K/Akt/mTOR pathway, inhibiting the mTORC1/mTORC2 complexes in a TSC1/TSC2-dependent manner. In addition, the CDPs blocked protein kinases from multiple signaling pathways involved in survival, proliferation, invasiveness, apoptosis, autophagy, and energy metabolism, such as PI3K/Akt/mTOR, Ras/Raf/MEK/ERK1/2, PI3K/JNK/PKA, p27Kip1/CDK1/survivin, MAPK, HIF-1, Wnt/β-catenin, HSP27, EMT, CSCs, and receptors, such as EGF/ErbB2/HGF/Met. Thus, the antiproliferative effect of the CDPs made it possible to identify the crosstalk of the signaling pathways involved in HeLa cell malignancy and to suggest that bacterial CDPs may be considered as a potential anti-neoplastic drug in human cervical adenocarcinoma therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Borders EB, Bivona C, Medina PJ (2010) Mammalian target of rapamycin: biological function and target for novel anticancer agents. Am J Health Syst Pharm 67(24):2095–2106. https://doi.org/10.2146/ajhp100020

    Article  CAS  PubMed  Google Scholar 

  2. Hu R, Wang MQ, Niu WB, Wang YJ, Liu YY, Liu LY, Wang M, Zhong J, You HY, Wu XH, Deng N, Lu L, Wei LB (2018) SKA3 promotes cell proliferation and migration in cervical cancer by activating the PI3K/Akt signaling pathway. Cancer Cell Int 18(1):183. https://doi.org/10.1186/s12935-018-0670-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang M, Wang M, Li X, Xie Y, Xia X, Tian J, Zhang K, Tang A (2018) Wnt signaling in cervical cancer? J Cancer 9(7):1277–1286. https://doi.org/10.7150/jca.22005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Manzo-Merino J, Contreras-Paredes A, Vazquez-Ulloa E, Rocha-Zavaleta L, Fuentes-Gonzalez AM, Lizano M (2014) The role of signaling pathways in cervical cancer and molecular therapeutic targets. Arch Med Res 45(7):525–539. https://doi.org/10.1016/j.arcmed.2014.10.008

    Article  CAS  PubMed  Google Scholar 

  5. Campos-Parra AD, Padua-Bracho A, Pedroza-Torres A, Figueroa-González G, Fernández-Retana J, Millan-Catalan O, Peralta-Zaragoza O, Cantú de León D, Herrera LA, Pérez-Plasencia C (2016) Comprehensive transcriptome analysis identifies pathways with therapeutic potential in locally advanced cervical cancer. Gynecol Oncol 143(2):406–413. https://doi.org/10.1016/j.ygyno.2016.08.327

    Article  CAS  PubMed  Google Scholar 

  6. Wang X, Chen M, Zhou J, Zhang X (2014) HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy (Review). Int J Oncol 45(1):18–30. https://doi.org/10.3892/ijo.2014.2399

    Article  CAS  PubMed  Google Scholar 

  7. Kim YC, Guan KL (2015) mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 125(1):25–32. https://doi.org/10.1172/jci73939

    Article  PubMed  PubMed Central  Google Scholar 

  8. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293. https://doi.org/10.1016/j.cell.2012.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gaubitz C, Prouteau M, Kusmider B, Loewith R (2016) TORC2 structure and function. Trends Biochem Sci 41(6):532–545. https://doi.org/10.1016/j.tibs.2016.04.001

    Article  CAS  PubMed  Google Scholar 

  10. Guri Y, Colombi M, Dazert E, Hindupur SK, Roszik J, Moes S, Jenoe P, Heim MH, Riezman I, Riezman H, Hall MN (2017) mTORC2 promotes tumorigenesis via lipid synthesis. Cancer Cell 32(6):807–823.e812. https://doi.org/10.1016/j.ccell.2017.11.011

    Article  CAS  PubMed  Google Scholar 

  11. Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168(6):960–976

    Article  CAS  Google Scholar 

  12. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101. https://doi.org/10.1126/science.1106148

    Article  CAS  PubMed  Google Scholar 

  13. Yang G, Murashige DS, Humphrey SJ, James DE (2015) A positive feedback loop between Akt and mTORC2 via SIN1 phosphorylation. Cell Rep 12(6):937–943. https://doi.org/10.1016/j.celrep.2015.07.016

    Article  CAS  PubMed  Google Scholar 

  14. Hernandez-Padilla L, Vazquez-Rivera D, Sanchez-Briones LA, Diaz-Perez AL, Moreno-Rodriguez J, Moreno-Eutimio MA, Meza-Carmen V, Cruz HR, Campos-Garcia J (2017) The antiproliferative effect of cyclodipeptides from Pseudomonas aeruginosa PAO1 on HeLa cells involves inhibition of phosphorylation of Akt and S6k kinases. Molecules. https://doi.org/10.3390/molecules22061024

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vázquez-Rivera D, González O, Guzmán-Rodríguez J, Díaz-Pérez AL, Ochoa-Zarzosa A, López-Bucio J, Meza-Carmen V, Campos-García J (2015) Cytotoxicity of cyclodipeptides from Pseudomonas aeruginosa PAO1 leads to apoptosis in human cancer cell lines. BioMed Res Int 2015:197608. https://doi.org/10.1155/2015/197608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ortiz-Castro R, Díaz-Pérez C, Martínez-Trujillo M, del Río RE, Campos-García J, López-Bucio J (2011) Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants. Proc Natl Acad Sci USA 108(17):7253–7258. https://doi.org/10.1073/pnas.1006740108

    Article  PubMed  Google Scholar 

  17. Gonzalez O, Ortiz-Castro R, Diaz-Perez C, Diaz-Perez AL, Magana-Duenas V, Lopez-Bucio J, Campos-Garcia J (2017) Non-ribosomal peptide synthases from Pseudomonas aeruginosa play a role in cyclodipeptide biosynthesis, quorum-sensing regulation, and root development in a plant host. Microbial Ecol 73(3):616–629. https://doi.org/10.1007/s00248-016-0896-4

    Article  CAS  Google Scholar 

  18. Karbowniczek M, Spittle CS, Morrison T, Wu H, Henske EP (2008) mTOR is activated in the majority of malignant melanomas. J Invest Dermatol 128(4):980–987. https://doi.org/10.1038/sj.jid.5701074

    Article  CAS  PubMed  Google Scholar 

  19. Batool A, Majeed ST, Aashaq S, Majeed R, Bhat NN, Andrabi KI (2020) Eukaryotic initiation factor 4E is a novel effector of mTORC1 signaling pathway in cross talk with Mnk1. Mol Cell Biochem 465(1):13–26. https://doi.org/10.1007/s11010-019-03663-z

    Article  CAS  PubMed  Google Scholar 

  20. Copp J, Manning G, Hunter T (2009) TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2. Cancer Res 69(5):1821–1827. https://doi.org/10.1158/0008-5472.CAN-08-3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu XN, Zhang GC, Sun JL, Zhu HR, Shi X, Song GQ, Weng SQ, Dong L, Liu TT, Shen XZ, Guo HY, Zhu JMA, Ohoo X (2020) Enhanced mLST8 expression correlates with tumor progression in hepatocellular carcinoma. Ann Surg Oncol 27(5):1546–1557

    Article  Google Scholar 

  22. Habib SL, Michel D, Masliah E, Thomas B, Ko HS, Dawson TM, Abboud H, Clark RA, Imam SZ (2008) Role of tuberin in neuronal degeneration. Neurochem Res 33(6):1113–1116. https://doi.org/10.1007/s11064-007-9558-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chresta CM, Davies BR, Hickson I, Harding T, Cosulich S, Critchlow SE, Vincent JP, Ellston R, Jones D, Sini P, James D, Howard Z, Dudley P, Hughes G, Smith L, Maguire S, Hummersone M, Malagu K, Menear K, Jenkins R, Jacobsen M, Smith GC, Guichard S, Pass M (2010) AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res 70(1):288–298. https://doi.org/10.1158/0008-5472.can-09-1751

    Article  CAS  PubMed  Google Scholar 

  24. Kawata T, Tada K, Kobayashi M, Sakamoto T, Takiuchi Y, Iwai F, Sakurada M, Hishizawa M, Shirakawa K, Shindo K, Sato H, Takaori-Kondo A (2018) Dual inhibition of the mTORC1 and mTORC2 signaling pathways is a promising therapeutic target for adult T-cell leukemia. Cancer Sci 109(1):103–111. https://doi.org/10.1111/cas.13431

    Article  CAS  PubMed  Google Scholar 

  25. Sanchez-Hernandez I, Baquero P, Calleros L, Calleros L, Chiloeches A (2011) Dual inhibition of (V600E)BRAF and the PI3K/AKT/mTOR pathway cooperates to induce apoptosis in melanoma cells through a MEK-independent mechanism. Cancer Lett 314(2):244–255

    Article  Google Scholar 

  26. Duran-Maldonado MX, Hernández-Padilla L, Gallardo-Pérez JC, Díaz-Pérez AL, Martínez-Alcantar L, Reyes-De La Cruz H, Rodríguez-Zavala JS, Pacheco-Rodríguez G, Moss J, Campos-Garcia J (2020) Bacterial cyclodipeptides target signal pathways involved in malignant melanoma. Front Oncol. https://doi.org/10.3389/fonc.2020.01111

    Article  PubMed  PubMed Central  Google Scholar 

  27. Derksen PW, Liu X, Saridin F, van der Gulden H, Zevenhoven J, Evers B, van Beijnum JR, Griffioen AW, Vink J, Krimpenfort P, Peterse JL, Cardiff RD, Berns A, Jonkers J (2006) Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 10(5):437–449. https://doi.org/10.1016/j.ccr.2006.09.013

    Article  CAS  PubMed  Google Scholar 

  28. Tinkle CL, Lechler T, Pasolli HA, Fuchs E (2004) Conditional targeting of E-cadherin in skin: insights into hyperproliferative and degenerative responses. Proc Natl Acad Sci (USA) 101(2):552–557. https://doi.org/10.1073/pnas.0307437100

    Article  CAS  Google Scholar 

  29. Tunggal JA, Helfrich I, Schmitz A, Schwarz H, Gunzel D, Fromm M, Kemler R, Krieg T, Niessen CM (2005) E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. EMBO J 24(6):1146–1156. https://doi.org/10.1038/sj.emboj.7600605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McGowan PM, Duffy MJ (2008) Matrix metalloproteinase expression and outcome in patients with breast cancer: analysis of a published database. Ann Oncol 19(9):1566–1572. https://doi.org/10.1093/annonc/mdn180

    Article  CAS  PubMed  Google Scholar 

  31. Jeong H, Ryu YJ, An J, Lee Y, Kim A (2012) Epithelial-mesenchymal transition in breast cancer correlates with high histological grade and triple-negative phenotype. Histopathology 60(6B):E87–95. https://doi.org/10.1111/j.1365-2559.2012.04195.x

    Article  PubMed  Google Scholar 

  32. Senbanjo LT, Chellaiah MA (2017) CD44: a multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells. Front Cell Dev Biol 5:18. https://doi.org/10.3389/fcell.2017.00018

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mendoza MC, Blenis J, Blenis J (2011) The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 36(6):320–328. https://doi.org/10.1016/j.tibs.2011.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bedogni B, Welford SM, Cassarino DS, Nickoloff BJ, Giaccia AJ, Powell MB (2005) The hypoxic microenvironment of the skin contributes to Akt-mediated melanocyte transformation. Cancer Cell 8(6):443–454. https://doi.org/10.1016/j.ccr.2005.11.005

    Article  CAS  PubMed  Google Scholar 

  35. Lloyd RV, Erickson LA, Jin L, Kulig E, Qian X, Cheville JC, Scheithauer BW (1999) p27(kip1): A multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am J Pathol 154(2):313–323

    Article  CAS  Google Scholar 

  36. Mariotti A, Perotti A, Sessa C, Ruegg C (2007) N-cadherin as a therapeutic target in cancer. Exp Opin Invest Drugs 16(4):451–465. https://doi.org/10.1517/13543784.16.4.451

    Article  CAS  Google Scholar 

  37. Smith AM, Zhang CRC, Cristino AS, Grady JP, Fink JL, Moore AS (2019) PTEN deletion drives acute myeloid leukemia resistance to MEK inhibitors. Oncotarget 10(56):5755–5767. https://doi.org/10.18632/oncotarget.27206

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ding X, Jiang X, Tian R, Zhao P, Li L, Wang X, Chen S, Zhu Y, Mei M, Bao S, Liu W, Tang Z, Sun Q (2019) RAB2 regulates the formation of autophagosome and autolysosome in mammalian cells. Autophagy 15(10):1774–1786. https://doi.org/10.1080/15548627.2019.1596478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou C, Ma K, Gao R, Mu C, Chen L, Liu Q, Luo Q, Feng D, Zhu Y, Chen Q (2017) Regulation of mATG9 trafficking by Src- and ULK1-mediated phosphorylation in basal and starvation-induced autophagy. Cell Res 27(2):184–201. https://doi.org/10.1038/cr.2016.146

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Consejo Nacional de Ciencia y Tecnología (CONACYT) of México (Grant Numbers 256119 and 222405), the Marcos Moshinsky Foundation, and Universidad Michoacana de San Nicolás de Hidalgo/C.I.C.2.14 Grants. L.H.-P. received a scholarship from CONACYT. We thank Alejandra Ochoa for HeLa cell line donation.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: JC-G, LH-P. Analysis and interpretation of data: LH-P, JC-G. Writing, review, and/or revision of the manuscript: JC-G, LH-P, HR-C. Administrative, technical, or material support: JC-G, HR-C.

Corresponding author

Correspondence to Jesús Campos-García.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Padilla, L., Reyes de la Cruz, H. & Campos-García, J. Antiproliferative effect of bacterial cyclodipeptides in the HeLa line of human cervical cancer reveals multiple protein kinase targeting, including mTORC1/C2 complex inhibition in a TSC1/2-dependent manner. Apoptosis 25, 632–647 (2020). https://doi.org/10.1007/s10495-020-01619-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-020-01619-z

Keywords

Navigation