Skip to main content

Advertisement

Log in

The α7 and β2 nicotinic acetylcholine receptor subunits regulate apoptosis in the infant hippocampus, and in sudden infant death syndrome (SIDS)

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptosis is increased in the hippocampus of infants who died of sudden infant death syndrome (SIDS), yet it is not known via which mechanism this has occurred. Following existing support for a role of the α7 and β2 nicotinic acetylcholine receptor (nAChR) subunits in apoptotic regulation, we aimed to determine whether these subunits are altered in the SIDS hippocampus and if they are correlated with cell death markers of active caspase-3 (Casp-3) and TUNEL. Further analyses were run according to the presence of major SIDS risk factors related to hypoxia (bed-sharing and prone sleeping), infection (presence of an upper respiratory tract infection (URTI)), cigarette smoke exposure and gender. Immunohistochemical expression of the markers was studied in 4 regions of the hippocampus (Cornu Ammonis (CA)1, CA2, CA3, CA4) and subiculum amongst 52 infants (aged 1–7 months) who died suddenly and unexpectedly (SUDI) and for whom the cause of death was explained (eSUDI; n = 9), or not and characterised as SIDS I (n = 8) and SIDS II (n = 35) according to the San Diego diagnostic criteria. Results showed that SIDS II infants had widespread increases in TUNEL compared with eSUDI and SIDS I infants, as well as increased α7 and Casp-3 in CA2 compared to eSUDI infants, although these changes were predominant amongst infants who did not bed-share. Cigarette smoke exposure had minimal effects on the markers, while an URTI was associated with changes in all markers (after accounting for bed-sharing). Our findings support the role of nAChRs in regulating apoptosis in the SIDS hippocampus, and highlight the need for separate analysis according to risk factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

CA:

Cornu Ammonis

Casp-3:

Caspase 3

ChAT:

Choline acetyltransferase

eSUDI:

Explained sudden unexpected death in infancy

HF:

Hippocampal formation

IHC:

Immunohistochemistry

IHH:

Intermittent hypercapnic hypoxia

nAChR:

Nicotinic acetylcholine receptor

SIDS:

Sudden infant death syndrome

SUDI:

Sudden unexpected death in infancy

TUNEL:

Terminal deoxynucleotidyl transferase (Tdt)-mediated dUTP nick end labelling

uSUDI:

Unexplained sudden unexpected death in infancy

URTI:

Upper respiratory tract infection

References

  1. Krous HF, Beckwith JB, Byard RW, Rognum TO, Bajanowski T, Corey T et al (2004) Sudden infant death syndrome and unclassified sudden infant deaths: a definitional and diagnostic approach. Pediatrics 114(1):234–238

    PubMed  Google Scholar 

  2. Hunt CE (1992) The cardiorespiratory control hypothesis for sudden infant death syndrome. Clin Perinatol 19(4):757–771

    CAS  PubMed  Google Scholar 

  3. Poe G, Kristensen MP, Rector D, Harper R (1996) Hippocampal activity during transient respiratory events in the freely behaving cat. Neuroscience 72(1):39–48

    CAS  PubMed  Google Scholar 

  4. Ruit KG, Neafsey EJ (1988) Cardiovascular and respiratory responses to electrical and chemical stimulation of the hippocampus in anesthetized and awake rats. Brain Res 457(2):310–321

    CAS  PubMed  Google Scholar 

  5. Zagon A, Totterdell S, Jones R (1994) Direct projections from the ventrolateral medulla oblongata to the limbic forebrain: anterograde and retrograde tract-tracing studies in the rat. J Comp Neurol 340(4):445–468

    CAS  PubMed  Google Scholar 

  6. Kinney HC, Cryan JB, Haynes RL, Paterson DS, Haas EA, Mena OJ et al (2015) Dentate gyrus abnormalities in sudden unexplained death in infants: morphological marker of underlying brain vulnerability. Acta Neuropathol 129(1):65–80

    CAS  PubMed  Google Scholar 

  7. Rodriguez ML, McMillan K, Crandall LA, Minter ME, Grafe MR, Poduri A et al (2012) Hippocampal asymmetry and sudden unexpected death in infancy: a case report. Forensic Sci Med Pathol 8(4):441–446

    PubMed  PubMed Central  Google Scholar 

  8. Waters KA, Meehan B, Huang J, Gravel RA, Michaud J, Côté A (1999) Neuronal apoptosis in sudden infant death syndrome. Pediatr Res 45(2):166–172

    CAS  PubMed  Google Scholar 

  9. Ambrose N, Rodriguez M, Waters KA, Machaalani R (2019) Cell death in the human infant central nervous system and in sudden infant death syndrome (SIDS). Apoptosis 24(1–2):46–61

    PubMed  Google Scholar 

  10. Jones S, Sudweeks S, Yakel JL (1999) Nicotinic receptors in the brain: correlating physiology with function. Trends Neurosci 22(12):555–561

    CAS  PubMed  Google Scholar 

  11. Cha J, Zea-Hernandez JA, Sin S, Graw-Panzer K, Shifteh K, Isasi CR et al (2017) The effects of obstructive sleep apnea syndrome on the dentate gyrus and learning and memory in children. J Neurosci 37(16):4280–4288

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Khuu MA, Pagan CM, Nallamothu T, Hevner RF, Hodge RD, Ramirez J-M et al (2019) Intermittent hypoxia disrupts adult neurogenesis and synaptic plasticity in the dentate gyrus. J Neurosci 39(7):1320–1331

    CAS  PubMed  PubMed Central  Google Scholar 

  13. SchneiderGasser EM, Haider T, Bengoetxea H, Gassmann M, Kosenkov D, Koester-Hegmann C et al (2018) High-altitude cognitive impairment is prevented by enriched environment including exercise via VEGF signaling. Front Cell Neurosci 12:532

    Google Scholar 

  14. Yang Y-S, Son SJ, Choi JH, Rah J-C (2018) Synaptic transmission and excitability during hypoxia with inflammation and reoxygenation in hippocampal CA1 neurons. Neuropharmacology 138:20–31

    CAS  PubMed  Google Scholar 

  15. Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239(1):57–69

    CAS  PubMed  Google Scholar 

  16. Nyakas C, Buwald B, Luiten PG (1996) Hypoxia and brain development. Prog Neurobiol 49(1):1–51

    CAS  PubMed  Google Scholar 

  17. Albuquerque EX, Pereira EF, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89(1):73–120

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gotti C, Clementi F, Fornari A, Gaimarri A, Guiducci S, Manfredi I et al (2009) Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem Pharmacol 78(7):703–711

    CAS  PubMed  Google Scholar 

  19. Machaalani R, Kashi PK, Waters KA (2010) Distribution of nicotinic acetylcholine receptor subunits α7 and β2 in the human brainstem and hippocampal formation. J Chem Neuroanat 40(3):223–231

    CAS  PubMed  Google Scholar 

  20. Zoli M, Picciotto MR, Ferrari R, Cocchi D, Changeux JP (1999) Increased neurodegeneration during ageing in mice lacking high-affinity nicotine receptors. EMBO J 18(5):1235–1244

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Laudenbach V, Medja F, Zoli M, Rossi FM, Evrard P, Changeux J-P et al (2002) Selective activation of central subtypes of the nicotinic acetylcholine receptor has opposite effects on neonatal excitotoxic brain injuries. FASEB J 16(3):423–425

    CAS  PubMed  Google Scholar 

  22. Parikh V, Ji J, Decker MW, Sarter M (2010) Prefrontal β2 subunit-containing and α7 nicotinic acetylcholine receptors differentially control glutamatergic and cholinergic signaling. J Neurosci 30(9):3518–3530

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hejmadi M, Dajas-Bailador F, Barns S, Jones B, Wonnacott S (2003) Neuroprotection by nicotine against hypoxia-induced apoptosis in cortical cultures involves activation of multiple nicotinic acetylcholine receptor subtypes. Mol Cell Neurosci 24(3):779–786

    CAS  PubMed  Google Scholar 

  24. Orr-Urtreger A, Broide RS, Kasten MR, Dang H, Dani JA, Beaudet AL et al (2000) Mice homozygous for the L250T mutation in the α7 nicotinic acetylcholine receptor show increased neuronal apoptosis and die within 1 day of birth. J Neurochem 74(5):2154–2166

    CAS  PubMed  Google Scholar 

  25. Gergalova G, Lykhmus O, Kalashnyk O, Koval L, Chernyshov V, Kryukova E et al (2012) Mitochondria express α7 nicotinic acetylcholine receptors to regulate Ca2+ accumulation and cytochrome c release: study on isolated mitochondria. PLoS ONE 7(2):31361

    Google Scholar 

  26. Lykhmus O, Gergalova G, Koval L, Zhmak M, Komisarenko S, Skok M (2014) Mitochondria express several nicotinic acetylcholine receptor subtypes to control various pathways of apoptosis induction. Int J Biochem Cell Biol 53:246–252

    CAS  PubMed  Google Scholar 

  27. Hernandez CM, Kayed R, Zheng H, Sweatt JD, Dineley KT (2010) Loss of α7 nicotinic receptors enhances β-amyloid oligomer accumulation, exacerbating early-stage cognitive decline and septohippocampal pathology in a mouse model of Alzheimer's disease. J Neurosci 30(7):2442–2453

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dwyer JB, McQuown SC, Leslie FM (2009) The dynamic effects of nicotine on the developing brain. Pharmacol Ther 122(2):125–139

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zeidler R, Albermann K, Lang S (2007) Nicotine and apoptosis. Apoptosis 12(11):1927–1943

    CAS  PubMed  Google Scholar 

  30. Resende RR, Adhikari A (2009) Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation. Cell Commun Signal 7(1):20

    PubMed  PubMed Central  Google Scholar 

  31. Machaalani R, Waters KA (2008) Neuronal cell death in the Sudden Infant Death Syndrome brainstem and associations with risk factors. Brain 131(1):218–228

    PubMed  Google Scholar 

  32. Vivekanandarajah A, Waters KA, Machaalani R (2015) Postnatal nicotine effects on the expression of nicotinic acetylcholine receptors in the developing piglet hippocampus and brainstem. Int J Dev Neurosci 47:183–191

    CAS  PubMed  Google Scholar 

  33. Mai JK, Majtanik M, Paxinos G (2015) Atlas of the human brain. Academic Press, New York

    Google Scholar 

  34. Ambrose N, Waters KA, Rodriguez ML, Bailey K, Machaalani R (2018) Neuronal apoptosis in the brainstem medulla of sudden unexpected death in infancy (SUDI), and the importance of standardized SUDI classification. Forensic Sci Med Pathol 14(1):42–56

    CAS  PubMed  Google Scholar 

  35. Duvernoy HM (2013) The human hippocampus: an atlas of applied anatomy. JF Bergmann-Verlag, München

    Google Scholar 

  36. Kinney HC, Haynes RL, Armstrong DD, Goldstein RD (2018) Abnormalities of the hippocampus in sudden and unexpected death in early life. SIDS sudden infant and early childhood death: the past, the present and the future. University of Adelaide Press, Adelaide

    Google Scholar 

  37. Collins-Praino LE, Byard RW (2019) Infants who die in shared sleeping situations differ from those who die while sleeping alone. Acta Paediatr 108(4):611–614

    CAS  PubMed  Google Scholar 

  38. Byard RW (2015) Overlaying, co-sleeping, suffocation, and sudden infant death syndrome: the elephant in the room. Forensic Sci Med Pathol 11(2):273–274

    PubMed  Google Scholar 

  39. Suresh K, Carino K, Johnston L, Servinsky L, Machamer CE, Kolb TM et al (2019) A nonapoptotic endothelial barrier-protective role for caspase-3. Am J Physiol 316(6):L1118–L1126

    CAS  Google Scholar 

  40. Dudek SM, Alexander GM, Farris S (2016) Rediscovering area CA2: unique properties and functions. Nat Rev Neurosci 17(2):89

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Simons SB, Escobedo Y, Yasuda R, Dudek SM (2009) Regional differences in hippocampal calcium handling provide a cellular mechanism for limiting plasticity. Proc Natl Acad Sci 106(33):14080–14084

    CAS  PubMed  Google Scholar 

  42. Sparks D, Hunsaker J (1998) Sudden infant death: a neurodegenerative disorder. Aktuelle Neuropädiatrie

  43. Sparks D, Landers T, Scheff S, Coyne C, Hunsaker J (1995) Apoptotic neurodegeneration in sudden infant death syndromE (SIDS). J Neuropathol Exp Neurol 54:415

    Google Scholar 

  44. Oehmichen M, Theuerkauf I, Bajanowski T, Merz H, Meissner C (1998) Enhanced reactivity of Alz-50 antibody in brains of sudden infant death syndrome victims versus brains with lethal hypoxic/ischemic injury. Acta Neuropathol 95(3):280–286

    CAS  PubMed  Google Scholar 

  45. Aishah A, Hinton T, Waters KA, Machaalani R (2019) The α3 and α4 nicotinic acetylcholine receptor (nAChR) subunits in the brainstem medulla of sudden infant death syndrome (SIDS). Neurobiol Dis 125:23–30

    CAS  PubMed  Google Scholar 

  46. Hayman RM, McDonald G, de C Baker NJ, Mitchell EA, Dalziel SR (2015) Infant suffocation in place of sleep: New Zealand national data 2002–2009. Arch Dis Childh 100(7):610–614

    PubMed  Google Scholar 

  47. Jensen LL, Banner J, Ulhøi BP, Byard RW (2014) β-Amyloid precursor protein staining of the brain in sudden infant and early childhood death. Neuropathol Appl Neurobiol 40(4):385–397

    CAS  PubMed  Google Scholar 

  48. Spinelli J, Byard RW, Van Den Heuvel C, Collins-Praino LE (2018) Medullary astrogliosis in sudden infant death syndrome varies with sleeping environment: evidence for different mechanisms of death in alone versus co-sleepers? J Child Neurol 33(4):269–274

    PubMed  Google Scholar 

  49. Machaalani R, Say M, Waters KA (2011) Effects of cigarette smoke exposure on nicotinic acetylcholine receptor subunits α7 and β2 in the sudden infant death syndrome (SIDS) brainstem. Toxicol Appl Pharmacol 257(3):396–404

    CAS  PubMed  Google Scholar 

  50. Browne CJ, Sharma N, Waters KA, Machaalani R (2010) The effects of nicotine on the alpha-7 and beta-2 nicotinic acetycholine receptor subunits in the developing piglet brainstem. Int J Dev Neurosci 28(1):1–7

    CAS  PubMed  Google Scholar 

  51. Vivekanandarajah A, Waters KA, Machaalani R (2019) Cigarette smoke exposure effects on the brainstem expression of nicotinic acetylcholine receptors (nAChRs), and on cardiac, respiratory and sleep physiologies. Respir Physiol Neurobiol 259:1–15

    CAS  PubMed  Google Scholar 

  52. Slotkin TA, Seidler FJ, Qiao D, Aldridge JE, Tate CA, Cousins MM et al (2005) Effects of prenatal nicotine exposure on primate brain development and attempted amelioration with supplemental choline or vitamin C: neurotransmitter receptors, cell signaling and cell development biomarkers in fetal brain regions of rhesus monkeys. Neuropsychopharmacology 30(1):129

    CAS  PubMed  Google Scholar 

  53. Vivekanandarajah A, Chan YL, Chen H, Machaalani R (2016) Prenatal cigarette smoke exposure effects on apoptotic and nicotinic acetylcholine receptor expression in the infant mouse brainstem. Neurotoxicology 53:53–63

    CAS  PubMed  Google Scholar 

  54. Trauth JA, Seidler FJ, Slotkin TA (2000) An animal model of adolescent nicotine exposure: effects on gene expression and macromolecular constituents in rat brain regions. Brain Res 867(1–2):29–39

    CAS  PubMed  Google Scholar 

  55. Machaalani R, Waters K, Tinworth K (2005) Effects of postnatal nicotine exposure on apoptotic markers in the developing piglet brain. Neuroscience 132(2):325–333

    CAS  PubMed  Google Scholar 

  56. Huang L, Abbott L, Winzer-Serhan U (2007) Effects of chronic neonatal nicotine exposure on nicotinic acetylcholine receptor binding, cell death and morphology in hippocampus and cerebellum. Neuroscience 146(4):1854–1868

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lykhmus O, Uspenska K, Koval L, Lytovchenko D, Voytenko L, Horid'ko T et al (2017) N-Stearoylethanolamine protects the brain and improves memory of mice treated with lipopolysaccharide or immunized with the extracellular domain of α7 nicotinic acetylcholine receptor. Int Immunopharmacol 52:290–296

    CAS  PubMed  Google Scholar 

  58. Léna C, Popa D, Grailhe R, Escourrou P, Changeux J-P, Adrien J (2004) β2-Containing nicotinic receptors contribute to the organization of sleep and regulate putative micro-arousals in mice. J Neurosci 24(25):5711–5718

    PubMed  PubMed Central  Google Scholar 

  59. Cohen G, Han Z-Y, Grailhe R, Gallego J, Gaultier C, Changeux J-P et al (2002) β2 nicotinic acetylcholine receptor subunit modulates protective responses to stress: a receptor basis for sleep-disordered breathing after nicotine exposure. Proc Natl Acad Sci 99(20):13272–13277

    CAS  PubMed  Google Scholar 

  60. Vivekanandarajah A, Aishah A, Waters KA, Machaalani R (2017) Intermittent hypercapnic hypoxia effects on the nicotinic acetylcholine receptors in the developing piglet hippocampus and brainstem. Neurotoxicology 60:23–33

    CAS  PubMed  Google Scholar 

  61. Gibson GE, Peterson C (1982) Decreases in the release of acetylcholine in vitro with low oxygen. Biochem Pharmacol 31(1):111–115

    CAS  PubMed  Google Scholar 

  62. Sparks DL, Hunsaker JC (1991) Sudden infant death syndrome: altered aminergic-cholinergic synaptic markers in hypothalamus. J Child Neurol 6(4):335–339

    CAS  PubMed  Google Scholar 

  63. Li X, Yu B, Sun Q, Zhang Y, Ren M, Zhang X et al (2018) Generation of a whole-brain atlas for the cholinergic system and mesoscopic projectome analysis of basal forebrain cholinergic neurons. Proc Natl Acad Sci 115(2):415–420

    CAS  PubMed  Google Scholar 

  64. Nasirova N, Quina LA, Agosto-Marlin IM, Ramirez JM, Lambe EK, Turner EE (2020) Dual recombinase fate mapping reveals a transient cholinergic phenotype in multiple populations of developing glutamatergic neurons. J Comp Neurol 528(2):283–307

    CAS  PubMed  Google Scholar 

  65. Hua S, Ek CJ, Mallard C, Johansson ME (2014) Perinatal hypoxia-ischemia reduces α7 nicotinic receptor expression and selective α7 nicotinic receptor stimulation suppresses inflammation and promotes microglial mox phenotype. BioMed Res Int 2014:718769

    PubMed  PubMed Central  Google Scholar 

  66. Bucks RS, Gidron Y, Harris P, Teeling J, Wesnes KA, Perry VH (2008) Selective effects of upper respiratory tract infection on cognition, mood and emotion processing: a prospective study. Brain Behav Immun 22(3):399–407

    PubMed  Google Scholar 

  67. Varatharaj A, Galea I (2017) The blood-brain barrier in systemic inflammation. Brain Behav Immun 60:1–12

    CAS  PubMed  Google Scholar 

  68. Perry VH (2010) Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathol 120(3):277–286

    CAS  PubMed  Google Scholar 

  69. Seven YB, Simon AK, Sajjadi E, Zwick A, Satriotomo I, Mitchell GS (2020) Adenosine 2A receptor inhibition protects phrenic motor neurons from cell death induced by protein synthesis inhibition. Exp Neurol 323:113067

    CAS  PubMed  Google Scholar 

  70. Tian J, Shi R, Xiao P, Liu T, She R, Wu Q et al (2019) Hepatitis E virus induces brain injury probably associated with mitochondrial apoptosis. Front Cell Infect Microbiol 9:77

    Google Scholar 

Download references

Acknowledgements

The tissue used in this study was obtained from the NSW Forensic and Analytical Science Service.

Funding

This study was funded by philanthropy; The Miranda Belshaw Foundation, Australia, and The SIDS Stampede, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Machaalani.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethical approval

Ethical approval was from the NSW health RPAH zone (Protocol No 3593, X13-0038 and HREC/13/RPAH/54) and University of Sydney (Approval No. 3013/235) Ethics committees.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 237 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luijerink, L.L.M., Vivekanandarajah, A., Waters, K.A. et al. The α7 and β2 nicotinic acetylcholine receptor subunits regulate apoptosis in the infant hippocampus, and in sudden infant death syndrome (SIDS). Apoptosis 25, 574–589 (2020). https://doi.org/10.1007/s10495-020-01618-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-020-01618-0

Keywords

Navigation