Skip to main content
Log in

AMPK is activated early in cerebellar granule cells undergoing apoptosis and influences VADC1 phosphorylation status and activity

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The neurodegeneration of cerebellar granule cells, after low potassium induced apoptosis, is known to be temporally divided into an early and a late phase. Voltage-dependent anion channel-1 (VDAC1) protein, changing from the closed inactive state to the active open state, is central to the switch between the early and late phase. It is also known that: (i) VDAC1 can undergo phosphorylation events and (ii) AMP-activated protein kinase (AMPK), the sensor of cellular stress, may have a role in neuronal homeostasis. In the view of this, the involvement of AMPK activation and its correlation with VDAC1 status and activity has been investigated in the course of cerebellar granule cells apoptosis. The results reported in this study show that an increased level of the phosphorylated, active, isoform of AMPK occurs in the early phase, peaks at 3 h and guarantees an increase in the phosphorylation status of VDCA1, resulting in a reduced activity of this latter. However this situation is transient in nature, since, in the late phase, AMPK activation decreases as well as the level of phosphorylated VDAC1. In a less phosphorylated status, VDAC1 fully recovers its gating activity and drives cells along the death route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Calissano P, Matrone C, Amadoro G (2009) Apoptosis and in vitro Alzheimer disease neuronal models. Commun Integr Biol (Camb) 2:163–169

    Article  CAS  Google Scholar 

  2. Atlante A, Bobba A, Calissano P, Passarella S, Marra E (2003) The apoptosis/necrosis transition in cerebellar granule cells depends on the mutual relationship of the antioxidant and the proteolytic systems which regulate ROS production and cytochrome c release en route to death. J Neurochem 84:960–971

    Article  CAS  PubMed  Google Scholar 

  3. Bobba A, Atlante A, Moro L, Calissano P, Marra E (2007) Nitric oxide has dual opposite roles during early and late phases of apoptosis in cerebellar granule neurons. Apoptosis 12:1597–1610

    Article  CAS  PubMed  Google Scholar 

  4. Bobba A, Casalino E, Petragallo VA, Atlante A (2014) Thioredoxin/thioredoxin reductase system involvement in cerebellar granule cell apoptosis. Apoptosis 19:1497–1508

    Article  CAS  PubMed  Google Scholar 

  5. Bobba A, Amadoro G, La Piana G, Calissano P, Atlante A (2015) Glycolytic enzyme upregulation and numbness of mitochondrial activity characterize the early phase of apoptosis in cerebellar granule cells. Apoptosis 20:10–28

    Article  CAS  PubMed  Google Scholar 

  6. Bobba A, Amadoro G, La Piana G, Petragallo VA, Calissano P, Atlante A (2015) Glucose-6-phosphate acts as tip the balance in modulating apoptosis in cerebellar granule cells. FEBS Lett. 589:651–658

    Article  CAS  PubMed  Google Scholar 

  7. Steinberg GR, Kemp BE (2009) AMPK in health and disease. Physiol Rev 89:1025–10278

    Article  CAS  PubMed  Google Scholar 

  8. Weisová P, Concannon CG, Devocelle M, Prehn JH, Ward MW (2009) Regulation of glucose transporter 3 surface expression by the AMP-activated protein kinase mediates tolerance to glutamate excitation in neurons. J Neurosci 29:2997–3008

    Article  PubMed  Google Scholar 

  9. Concannon CG, Tuffy LP, Weisová P, Bonner HP, Dávila D, Bonner C, Devocelle MC, Strasser A, Ward MW, Prehn JH (2010) AMP kinase-mediated activation of the BH3-only protein Bim couples energy depletion to stress-induced apoptosis. J Cell Biol 189:83–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cardaci S, Filomeni G, Ciriolo MR (2012) Redox implications of AMPK-mediated signal transduction beyond energetic clues. J Cell Sci 125:2115–2125

    Article  CAS  PubMed  Google Scholar 

  11. Salminen A, Kaarniranta K (2012) AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev 11:230–241

    Article  CAS  PubMed  Google Scholar 

  12. Vingtdeux V, Davies P, Dickson DW, Marambaud P (2011) AMPK is abnormally activated in tangle- and pre-tangle-bearing neurons in Alzheimer’s disease and other tauopathies. Acta Neuropathol 121:337–349

    Article  CAS  PubMed  Google Scholar 

  13. Mairet-Coello G, Courchet J, Pieraut S, Courchet V, Maximov A, Polleux F (2013) The CAMKK2-AMPK kinase pathway mediates the synaptotoxic effects of Aβ oligomers through Tau phosphorylation. Neuron 78:94–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Greco SJ, Sarkar S, Johnston JM, Tezapsidis N (2009) Leptin regulates Tau phosphorylation and Amyloid through AMPK in Neuronal Cells. Biochem Biophys Res 380:98–104

    Article  CAS  Google Scholar 

  15. Vingtdeux V, Giliberto L, Zhao H, Chandakkar P, Wu Q, Simon JE, Janle EM, Lobo J, Ferruzzi MG, Davies P, Marambaud P (2010) AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J Biol Chem 285:9100–9113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martel C, Wang Z, Brenner C (2014) VDAC phosphorylation, a lipid sensor influencing the cell fate. Mitochondrion 19:69–77

    Article  CAS  PubMed  Google Scholar 

  17. Levi G, Aloisi F, Ciotti MT, Gallo V (1984) Autoradiographic localization and depolarization-induced release of acidic amino acids in differentiating cerebellar granule cell cultures. Brain Res 290:77–86

    Article  CAS  PubMed  Google Scholar 

  18. Volontè C, Ciotti T, Battistini L (1994) Development of a method for measuring cell number: application to CNS primary neuronal cultures. Cytometry 17:274–276

    Article  PubMed  Google Scholar 

  19. Stefanis L, Troy CM, Qi H, Greene LA (1997) Inhibitors of trypsin-like serine proteases inhibit processing of the caspase Nedd-2 and protect PC12 cells and sympathetic neurons from death evoked by withdrawal of trophic support. J Neurochem 69:1425–1437

    Article  CAS  PubMed  Google Scholar 

  20. D’Mello SR, Galli C, Ciotti T, Calissano P (1993) Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP. Proc Natl Acad Sci USA 90:10989–10993

    Article  PubMed  PubMed Central  Google Scholar 

  21. Galli C, Meucci O, Scorziello A, Werge TM, Calissano P, Schettini G (1995) Apoptosis in cerebellar granule cells is blocked by high KCl, forskolin, and IGF-1 through distinct mechanisms of action: the involvement of intracellular calcium and RNA synthesis. J Neurosci 15:1172–1179

    CAS  PubMed  Google Scholar 

  22. Schulz JB, Weller M, Klockgether T (1996) Potassium deprivation-induced apoptosis of cerebellar granule neurons: a sequential requirement for new mRNA and protein synthesis, ICE-like protease activity, and reactive oxygen species. J Neurosci 16:4696–4706

    CAS  PubMed  Google Scholar 

  23. Nardi N, Avidan G, Daily D, Zilkha-Falb R, Barzilai A (1997) Biochemical and temporal analysis of events associated with apoptosis induced by lowering the extracellular potassium concentration in mouse cerebellar granule neurons. J Neurochem 68:750–759

    Article  CAS  PubMed  Google Scholar 

  24. Armstrong RC, Aja TJ, Hoang KD, Gaur S, Bai X, Alnemri ES, Litwack G, Karanewsky DS, Fritz LC, Tomaselli KJ (1997) Activation of the CED3/ICE-related protease CPP32 in cerebellar granule neurons undergoing apoptosis but not necrosis. J Neurosci 17:553–562

    CAS  PubMed  Google Scholar 

  25. Ciani E, Virgili M, Contestabile M (2002) Akt pathway mediates a cGMP-dependent survival role of nitric oxide in cerebellar granule cells. J Neurochem 81:218–228

    Article  CAS  PubMed  Google Scholar 

  26. Tewari M, Quan LT, O’Rourke K, Desnoyers S, Zeng Z, Beidler DR, Poirier GG, Salvesen GS, Dixit VM (1995) Yama/CPP32 beta, a mammalian homolog of CED-3, is a Crma-inhibitable protease that cleave the death substrate poly (ADP-ribose) polymerase. Cell 81:801–809

    Article  CAS  PubMed  Google Scholar 

  27. Stefanis L, Park DS, Friedman WJ, Greene LA (1999) Caspase-dependent and -independent death of camptothecin-treated embryonic cortical neurons. J Neurosci 19:6235–6247

    CAS  PubMed  Google Scholar 

  28. Atlante A, Bobba A, Paventi G, Pizzuto R, Passarella S (2010) Genistein and daidzein prevent low potassium-dependent apoptosis of cerebellar granule cells. Biochem Pharmacol 79:758–767

    Article  CAS  PubMed  Google Scholar 

  29. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Corton JM, Gillespie JG, Hawley SA, Hardie DG (1995) 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem 229:558–565

    Article  CAS  PubMed  Google Scholar 

  31. Sullivan JE, Brocklehurst KJ, Marley AE, Carey F, Carling D, Beri RK (1994) Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Lett 353:33–36

    Article  CAS  PubMed  Google Scholar 

  32. Hardie DG (2015) AMPK: positive and negative regulation, and its role in whole-body energy homeostasis. Curr Opin Cell Biol 33:1–7

    Article  CAS  PubMed  Google Scholar 

  33. Tajes M, Yeste-Velasco M, Zhu X, Chou SP, Smith MA, Pallas M, Camins A, Casadesus G (2009) Activation of Akt by lithium: Pro-survival pathways in aging. Mech Ageing Dev 130:253–261

    Article  CAS  PubMed  Google Scholar 

  34. Li J, Zeng Z, Viollet B, Ronnett GV, McCullough LD (2007) Neuroprotective effects of adenosine monophosphate-activated protein kinase inhibition and gene deletion in stroke. Stroke 38:2992–2999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McCullough LD, Zeng Z, Li H, Landree LE, McFadden J, Ronnett GV (2005) Pharmacological inhibition of AMP-activated protein kinase provides neuroprotection in stroke. J Biol Chem 280:20493–20502

    Article  CAS  PubMed  Google Scholar 

  36. Nakatsu Y, Kotake Y, Hino A, Ohta S (2008) Activation of AMP-activated protein kinase by tributyltin induces neuronal cell death. Toxicol Appl Pharmacol 230:358–363

    Article  CAS  PubMed  Google Scholar 

  37. Culmsee C, Monnig J, Kemp BE, Mattson MP (2001) AMP-activated protein kinase is highly expressed in neurons in the developing rat brain and promotes neuronal survival following glucose deprivation. J Mol Neurosci 17:45–58

    Article  CAS  PubMed  Google Scholar 

  38. Ramamurthy S, Ronnett G (2012) AMP-activated protein kinase (AMPK) and energy-sensing in the brain. Exp Neurobiol 21:52–60

    Article  PubMed  PubMed Central  Google Scholar 

  39. Poels J, Spasić MR, Callaerts P, Norga KK (2009) Expanding roles for AMP-activated protein kinase in neuronal survival and autophagy. Bioessays 31(9):944–952

    Article  CAS  PubMed  Google Scholar 

  40. Choi SY, Yang JH (2016) AMP-activated protein kinase is involved in perfluorohexanesulfonate-induced apoptosis of neuronal cells. Chemosphere 149:1–7

    Article  PubMed  Google Scholar 

  41. Sun H, Wang Y (2012) Novel Ser/Thr protein phosphatases in cell death regulation. Physiology (Bethesda) 27:1–18

    Article  Google Scholar 

  42. Sontag JM, Sontag E (2014) Protein phosphatase 2 A dysfunction in Alzheimer’s disease. Front Mol Neurosci 11:7–16

    Google Scholar 

  43. Weisová P, Anilkumar U, Ryan C, Concannon CG, Prehn JH, Ward MW (2012) ‘Mild mitochondrial uncoupling’ induced protection against neuronal excitotoxicity requires AMPK activity. Biochim Biophys Acta 1817:744–753

    Article  PubMed  Google Scholar 

  44. Head SA, Shi W, Zhao L, Gorshkov K, Pasunooti K, Chen Y, Deng Z, Li RJ, Shim JS, Tan W, Hartung T, Zhang J, Zhao Y, Colombini M, Liu JO (2015) Antifungal drug itraconazole VDAC1 to modulate the AMPK/mTOR signaling axis in endothelial cells. Proc Natl Acad Sci USA 112:E7276–E7285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Das S, Wong R, Rajapakse N, Murphy E, Steenbergen C (2008) Glycogen synthase kinase 3 inhibition slows mitochondrial adenine nucleotide transport and regulates voltage-dependent anion channel phosphorylation. Circ Res 103:983–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pastorino JG, Hoek JB, Shulga N (2005) Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res 65:10545–10554

    Article  CAS  PubMed  Google Scholar 

  47. Kerner J, Lee K, Tandler B, Hoppel CL (2012) VDAC proteomics: post-translation modifications. Biochim Biophys Acta 1818:1520–1525

    Article  CAS  PubMed  Google Scholar 

  48. Sheldon KL, Maldonado EN, Lemasters JJ, Rostovtseva TK, Bezrukov SM (2011) Phosphorylation of voltage-dependent anion channel by serine/threonine kinases governs its interaction with tubulin. PLoS ONE 6:e25539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fernandez-Echevarria C, Díaz M, Ferrer I, Canerina-Amaro A, Marin R (2014) Aβ promotes VDAC1 channel dephosphorylation in neuronal lipid rafts. Relevance to the mechanisms of neurotoxicity in Alzheimer’s disease. Neuroscience 278:354–366

    Article  CAS  PubMed  Google Scholar 

  50. Reddy PH (2013) Amyloid beta-induced glycogen synthase kinase 3β phosphorylated VDAC1 in Alzheimer’s disease: implications for synaptic dysfunction and neuronal damage. Biochim Biophys Acta 1832:1913–1921

    Article  CAS  PubMed  Google Scholar 

  51. Gupta R, Ghosh S (2015) Phosphorylation voltage-dependent anion channel by c-Jun N-terminal Kinase-3 leads to closure of the channel. Biochem Biophys Res Commun 459:100–106

    Article  CAS  PubMed  Google Scholar 

  52. Chen Y, Gaczynska M, Osmulski P, Polci R, Riley DJ (2010) Phosphorylation by Nek1 regulates opening and closing of voltage dependent anion channel 1. Biochem Biophys Res Commun 394:798–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tewari SG, Zhou Y, Otto BJ, Dash RK, Kwok WM, Beard DA (2015) Markov chain Monte Carlo based analysis of post-translationally modified VDAC gating kinetics. Front Physiol 5:513. doi:10.3389/fphys.2014.00513

    Article  PubMed  PubMed Central  Google Scholar 

  54. Strogolova V, Orlova M, Shevade A, Kuchin S (2012) Mitochondrial porin Por1 and its homolog Por2 contribute to the positive control of Snf1 protein kinase in Saccharomyces cerevisiae. Eukaryot Cell 11:1568–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Mr Gaetano Devito for his skilful technical assistance and Dr A. Storelli for linguistic consultation. This research was supported by: Project FIRB-MERIT—RBNE08HWLZ_012 to M.N.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bobba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobba, A., Casalino, E., Amadoro, G. et al. AMPK is activated early in cerebellar granule cells undergoing apoptosis and influences VADC1 phosphorylation status and activity. Apoptosis 22, 1069–1078 (2017). https://doi.org/10.1007/s10495-017-1389-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-017-1389-8

Keywords

Navigation