Skip to main content
Log in

Adipocyte microenvironment promotes Bclxl expression and confers chemoresistance in ovarian cancer cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Resistance to mitochondria-initiated apoptosis is a hallmark of chemoresistant cancer stem cells including CD44+/MyD88+ epithelial ovarian cancer (EOC) stem cells. This is controlled by members of the Bcl2 family of proteins, which function as rheostats of mitochondrial stability. We observed a differential expression profile of Bcl2 family members comparing the chemoresistant EOC stem cells and the chemosensitive CD44−/MyD88− EOC cells. Chemoresistant EOC stem cells surprisingly express higher levels of the pro-apoptotic members Bak and Bax compared to the chemosensitive EOC cells. In addition, whereas chemosensitive EOC cells preferentially express Bcl2, chemoresistant EOC stem cells preferentially express Bclxl. In the EOC stem cells, 40% knock-down of Bclxl expression was sufficient to induce the full activation of caspases and this can be reversed by concurrent knock-down of Puma. More importantly, we demonstrate that Bclxl expression levels in EOC cells is dynamic and can be regulated by microenvironments that are enriched with the pro-inflammatory cytokine IL-6 such as the cancer stem cell and adipocyte niches. Adipocyte-induced upregulation of Bclxl correlated with acquisition of chemoresistance and thus demonstrates how a specific microenvironment can regulate the expression of apoptotic proteins and confer chemoresistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64:9–29

    Article  PubMed  Google Scholar 

  2. Agarwal R, Kaye SB (2003) Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer 3:502–516

    Article  CAS  PubMed  Google Scholar 

  3. Covens A, Carey M, Bryson P, Verma S, Fung Kee Fung M, Johnston M (2002) Systematic review of first-line chemotherapy for newly diagnosed postoperative patients with stage II, III, or IV epithelial ovarian cancer. Gynecol Oncol 85:71–80

    Article  CAS  PubMed  Google Scholar 

  4. Morgan RJ Jr, Alvarez RD, Armstrong DK et al (2008) Ovarian cancer. Clinical practice guidelines in oncology. J Natl Compr Canc Netw 6:766–794

    CAS  PubMed  Google Scholar 

  5. Craveiro V, Yang-Hartwich Y, Holmberg JC et al (2013) Phenotypic modifications in ovarian cancer stem cells following Paclitaxel treatment. Cancer Med 2:751–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Flick MB, O’Malley D, Rutherford T et al (2004) Apoptosis-based evaluation of chemosensitivity in ovarian cancer patients. J Soc Gynecol Investig 11:252–259

    Article  CAS  PubMed  Google Scholar 

  7. Fraser M, Leung B, Jahani-Asl A, Yan X, Thompson WE, Tsang BK (2003) Chemoresistance in human ovarian cancer: the role of apoptotic regulators. Reprod Biol Endocrinol 1:66

    Article  PubMed  PubMed Central  Google Scholar 

  8. Igney FH, Krammer PH (2002) Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2:277–288

    Article  CAS  PubMed  Google Scholar 

  9. Alvero AB, Chen R, Fu HH et al (2009) Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle 8:158–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kamsteeg M, Rutherford T, Sapi E et al (2003) Phenoxodiol—an isoflavone analog–induces apoptosis in chemoresistant ovarian cancer cells. Oncogene 22:2611–2620

    Article  CAS  PubMed  Google Scholar 

  11. Mor G, Montagna MK, Alvero AB (2008) Modulation of apoptosis to reverse chemoresistance. Methods Mol Biol 414:1–12

    CAS  PubMed  Google Scholar 

  12. Sapi E, Alvero AB, Chen W et al (2004) Resistance of ovarian carcinoma cells to docetaxel is XIAP dependent and reversible by phenoxodiol. Oncol Res 14:567–578

    CAS  PubMed  Google Scholar 

  13. Alvero AB, Chen R, Fu H, Montagna M, Visintin I, Silasi D, Mor G (2008) Identification and characterization of cancer stem cells in ovarian cancer. American Association for Cancer Research Annual Meeting, San Diego, CA

  14. Alvero AB, Heaton A, Lima E et al (2016) TRX-E-002-1 Induces c-jun-dependent apoptosis in ovarian cancer stem cells and prevents recurrence in vivo. Mol Cancer Ther 15:1279–1290

    Article  CAS  PubMed  Google Scholar 

  15. Alvero AB, Montagna MK, Holmberg JC, Craveiro V, Brown D, Mor G (2011) Targeting the mitochondria activates two independent cell death pathways in ovarian cancer stem cells. Mol Cancer Ther 10:1385–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alvero AB, Montagna MK, Sumi NJ, Joo WD, Graham E, Mor G (2014) Multiple blocks in the engagement of oxidative phosphorylation in putative ovarian cancer stem cells: implication for maintenance therapy with glycolysis inhibitors. Oncotarget 5:8703–8715

    Article  PubMed  PubMed Central  Google Scholar 

  17. Baiocchi M, Biffoni M, Ricci-Vitiani L, Pilozzi E, De Maria R (2010) New models for cancer research: human cancer stem cell xenografts. Curr Opin Pharmacol 10:380–384

    Article  CAS  PubMed  Google Scholar 

  18. Bapat SA (2010) Human ovarian cancer stem cells. Reproduction 140:33–41

    Article  CAS  PubMed  Google Scholar 

  19. Casagrande F, Cocco E, Bellone S et al (2011) Eradication of chemotherapy-resistant CD44+ human ovarian cancer stem cells in mice by intraperitoneal administration of Clostridium perfringens enterotoxin. Cancer 117:5519–5528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284

    Article  CAS  PubMed  Google Scholar 

  21. Winquist RJ, Furey BF, Boucher DM (2010) Cancer stem cells as the relevant biomass for drug discovery. Curr Opin Pharmacol 10:385–390

    Article  CAS  PubMed  Google Scholar 

  22. Alvero AB, O’Malley D, Brown D et al (2006) Molecular mechanism of phenoxodiol-induced apoptosis in ovarian carcinoma cells. Cancer 106:599–608

    Article  CAS  PubMed  Google Scholar 

  23. Alvero AB, Fu HH, Holmberg J et al (2009) Stem-like ovarian cancer cells can serve as tumor vascular progenitors. Stem Cells 27:2405–2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alvero AB, Montagna MK, Chen R et al (2009) NV-128, a novel isoflavone derivative, induces caspase-independent cell death through the Akt/mammalian target of rapamycin pathway. Cancer 115:3204–3216

    Article  CAS  Google Scholar 

  25. Chefetz I, Alvero AB, Holmberg JC et al (2013) TLR2 enhances ovarian cancer stem cell self-renewal and promotes tumor repair and recurrence. Cell Cycle 12:511–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Craveiro V, Yang-Hartwich Y, Holmberg J, Sumi N, Pizzonia J, Griffin B, Gill S, Silasi D, Azodi M, Rutherford T, Alvero AB, Mor G (2013) Phenotypic modifications in ovarian cancer stem cells following Paclitaxel treatment. Cancer Med 2:751–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kelly MG, Alvero AB, Chen R et al (2006) TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res 66:3859–3868

    Article  CAS  PubMed  Google Scholar 

  28. Yang-Hartwich Y, Soteras MG, Lin ZP et al (2015) p53 protein aggregation promotes platinum resistance in ovarian cancer. Oncogene 34:3605–3616

    Article  CAS  PubMed  Google Scholar 

  29. Liu M, Mor G, Cheng H et al (2013) High frequency of putative ovarian cancer stem cells with CD44/CK19 coexpression is associated with decreased progression-free intervals in patients with recurrent epithelial ovarian cancer. Reprod Sci 20:605–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Steffensen KD, Alvero AB, Yang Y et al (2011) Prevalence of epithelial ovarian cancer stem cells correlates with recurrence in early-stage ovarian cancer. J Oncol 2011:620523

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656

    Article  CAS  PubMed  Google Scholar 

  32. Daniel PT, Schulze-Osthoff K, Belka C, Guner D (2003) Guardians of cell death: the Bcl-2 family proteins. Essays Biochem 39:73–88

    Article  CAS  PubMed  Google Scholar 

  33. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  CAS  PubMed  Google Scholar 

  34. O’Neill KL, Huang K, Zhang J, Chen Y, Luo X. (2016) Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Genes Dev 30:973–988

    Article  Google Scholar 

  35. Reed JC (2002) Apoptosis-based therapies. Nat Rev Drug Discov 1:111–121

    Article  CAS  PubMed  Google Scholar 

  36. Bonora M, Wieckowsk MR, Chinopoulos C et al (2015) Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene 34:1608

    Article  CAS  PubMed  Google Scholar 

  37. Bhusari PA, Khairnar KB (2014) Greater Omental pancake tumour due to metastasis of ovarian cancer—a cadaveric study. J Clin Diagn Res 8:142–143

    PubMed  PubMed Central  Google Scholar 

  38. Park J, Morley TS, Kim M, Clegg DJ, Scherer PE (2014) Obesity and cancer–mechanisms underlying tumour progression and recurrence. Nat Rev Endocrinol 10:455–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang C, Gao C, Meng K, Qiao H, Wang Y (2015) Human adipocytes stimulate invasion of breast cancer MCF-7 cells by secreting IGFBP-2. PloS One 10:e0119348

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nieman KM, Kenny HA, Penicka CV et al (2011) Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 17:1498–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nowicka A, Marini FC, Solley TN et al (2013) Human omental-derived adipose stem cells increase ovarian cancer proliferation, migration, and chemoresistance. PloS One 8:e81859

    Article  PubMed  PubMed Central  Google Scholar 

  42. Alvero AB, Montagna MK, Craveiro V, Liu L, Mor G (2012) Distinct subpopulations of epithelial ovarian cancer cells can differentially induce macrophages and T regulatory cells toward a pro-tumor phenotype. Am J Reprod Immunol 67:256–265

    Article  CAS  PubMed  Google Scholar 

  43. Mor G, Alvero A. (2013) The duplicitous origin of ovarian cancer. Rambam Maimonides Med J 4:e0006

    Article  PubMed  PubMed Central  Google Scholar 

  44. Vishwanath D, Srinivasan H, Patil MS et al (2013) Novel method to differentiate 3T3 L1 cells in vitro to produce highly sensitive adipocytes for a GLUT4 mediated glucose uptake using fluorescent glucose analog. J Cell Commun Signal 7:129–140

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rizzatti V, Boschi F, Pedrotti M, Zoico E, Sbarbati A, Zamboni M (2013) Lipid droplets characterization in adipocyte differentiated 3T3-L1 cells: size and optical density distribution. Eur J Histochem 57:e24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pizzonia J, Holmberg J, Orton S et al (2012) Multimodality animal rotation imaging system (Mars) for in vivo detection of intraperitoneal tumors. Am J Reprod Immunol 67:84–90

    Article  PubMed  Google Scholar 

  47. Letai A (2009) Puma strikes Bax. J Cell Biol 185:189–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gallenne T, Gautier F, Oliver L et al (2009) Bax activation by the BH3-only protein Puma promotes cell dependence on antiapoptotic Bcl-2 family members. J Cell Biol 185:279–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shamas-Din A, Brahmbhatt H, Leber B, Andrews DW (2011) BH3-only proteins: Orchestrators of apoptosis. Biochim Biophys Acta 1813:508–520

    Article  CAS  PubMed  Google Scholar 

  50. Lomonosova E, Chinnadurai G (2008) BH3-only proteins in apoptosis and beyond: an overview. Oncogene 27(Suppl 1):S2–S19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2:183–192

    Article  CAS  PubMed  Google Scholar 

  52. Grad JM, Zeng XR, Boise LH (2000) Regulation of Bcl-xL: a little bit of this and a little bit of STAT. Curr Opin Oncol 12:543–549

    Article  CAS  PubMed  Google Scholar 

  53. Catlett-Falcone R, Landowski TH, Oshiro MM et al (1999) Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10:105–115

    Article  CAS  PubMed  Google Scholar 

  54. Chen R, Alvero AB, Silasi DA et al (2008) Regulation of IKKbeta by miR-199a affects NF-kappaB activity in ovarian cancer cells. Oncogene 27:4712–4723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Puthier D, Bataille R, Amiot M (1999) IL-6 up-regulates mcl-1 in human myeloma cells through JAK/STAT rather than ras/MAP kinase pathway. Eur J Immunol 29:3945–3950

    Article  CAS  PubMed  Google Scholar 

  56. Sumi NJ, Lima E, Pizzonia J et al (2014) Murine model for non-invasive imaging to detect and monitor ovarian cancer recurrence. J Vis Exp JoVE 93:e51815

    Google Scholar 

  57. de la Coste A, Fabre M, McDonell N et al (1999) Differential protective effects of Bcl-xL and Bcl-2 on apoptotic liver injury in transgenic mice. Am J Physiol 277:G702–G708

    PubMed  Google Scholar 

  58. Fiebig AA, Zhu W, Hollerbach C, Leber B, Andrews DW (2006) Bcl-XL is qualitatively different from and ten times more effective than Bcl-2 when expressed in a breast cancer cell line. BMC Cancer 6:213

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gottschalk AR, Boise LH, Thompson CB, Quintans J (1994) Identification of immunosuppressant-induced apoptosis in a murine B-cell line and its prevention by bcl-x but not bcl-2. Proc Natl Acad Sci USA 91:7350–7354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Roberts AW, Davids MS, Pagel JM et al (2016) Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med 374:311–322

    Article  CAS  PubMed  Google Scholar 

  61. Vandenberg CJ, Cory S (2013) ABT-199, a new Bcl-2-specific BH3 mimetic, has in vivo efficacy against aggressive Myc-driven mouse lymphomas without provoking thrombocytopenia. Blood 121:2285–2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Green JM, Alvero AB, Kohen F, Mor G (2009) 7-(O)-Carboxymethyl daidzein conjugated to N-t-Boc-hexylenediamine: a novel compound capable of inducing cell death in epithelial ovarian cancer stem cells. Cancer Biol Ther 8:1747–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tebbe C, Chhina J, Dar SA et al (2014) Metformin limits the adipocyte tumor-promoting effect on ovarian cancer. Oncotarget 5:4746–4764

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gil Mor.

Ethics declarations

Conflict of interest

None of the authors have any competing financial interest to declare.

Additional information

This work is supported in part by a grant from the Discovery to Cure Program, the Sands Family Foundation, and Debra Levin Endowment Fund.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 791 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardenas, C., Montagna, M.K., Pitruzzello, M. et al. Adipocyte microenvironment promotes Bclxl expression and confers chemoresistance in ovarian cancer cells. Apoptosis 22, 558–569 (2017). https://doi.org/10.1007/s10495-016-1339-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1339-x

Keywords

Navigation