Skip to main content
Log in

Alpha 5/6 helix domains together with N-terminus determine the apoptotic potency of the Bcl-2 family proteins

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

A critical process in apoptosis is the permeabilization of the mitochondrial outer membrane (MOM). This process is known to be regulated by the multi-domain Bcl-2 family proteins. For example, the pro-apoptotic proteins Bax and Bak are responsible for forming pores at MOM. The anti-apoptotic proteins (including Bcl-2, Mcl-1 and Bcl-xL), on the other hand, can inhibit this pore-forming process. Interestingly, although these two subgroups of proteins perform opposite apoptotic functions, their structures are very similar. This raises two highly interesting questions: (1) Why do these structurally similar proteins play opposite roles in apoptosis? (2) What are the roles of different functional domains of a Bcl-2 family protein in determining its apoptotic property? In this study, we generated a series of deletion mutants and substitution chimera, and used a combination of molecular biology, bio-informatics and living cell imaging techniques to answer these questions. Our major findings are: (1) All of the Bcl-2 family proteins appear to possess an intrinsic pro-apoptotic property. (2) The N-termini of these proteins play an active role in suppressing their pro-apoptotic function. (3) The apoptotic potency is positively correlated with membrane affinity of the alpha 5/6 helix domains. (4) Charge distribution flanking the alpha 5/6 helices is also important for the apoptotic potency. These findings explain why different members of Bcl-2 family proteins with similar domain composition can function oppositely in the apoptotic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Bak:

Bcl-2-antagonist killer

Bax:

Bcl-2-associated X protein

Bcl-2:

B cell lymphoma-2

Bcl-xL:

B-cell lymphoma-extra large

BH domain:

Bcl-2 homology domain

Caspase:

Cysteine aspartase

CCD:

Charge-coupled device

EGFP:

Enhanced green fluorescent protein

EYFP:

Enhanced yellow fluorescent protein

FBS:

Fetal bovine serum

Hr:

Hour

Mcl-1:

Myeloid cell leukaemia sequence 1

MEM:

Minimum essential medium

MOM:

Mitochondrial outer membrane

PBS:

Phosphate-buffered saline

PCR:

Polymerase chain reaction

pDNA:

Plasmid DNA

TM:

Transmembrane

UV:

Ultraviolet light

VDAC:

Voltage-dependent anion channel

References

  1. Vaux DL, Korsmeyer SJ (1999) Cell death in development. Cell 96(2):245–254

    Article  CAS  PubMed  Google Scholar 

  2. Meier P, Finch A, Evan G (2000) Apoptosis in development. Nature 407(6805):796–801

    Article  CAS  PubMed  Google Scholar 

  3. Martin SJ, Cotter TG (1991) Ultraviolet B irradiation of human leukaemia HL-60 cells in vitro induces apoptosis. Int J Radiat Biol 59(4):1001–1016

    Article  CAS  PubMed  Google Scholar 

  4. Nagata S (1997) Apoptosis by death factor. Cell 88(3):355–365

    Article  CAS  PubMed  Google Scholar 

  5. Schmidt S, Rainer J, Ploner C, Presul E, Riml S, Kofler R (2004) Glucocorticoid-induced apoptosis and glucocorticoid resistance: molecular mechanisms and clinical relevance. Cell Death Differ 11(Suppl 1):S45–S55

    Article  CAS  PubMed  Google Scholar 

  6. Singh TR, Shankar S, Chen X, Asim M, Srivastava RK (2003) Synergistic interactions of chemotherapeutic drugs and tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand on apoptosis and on regression of breast carcinoma in vivo. Cancer Res 63(17):5390–5400

    CAS  PubMed  Google Scholar 

  7. Li J, Yuan J (2008) Caspases in apoptosis and beyond. Oncogene 27(48):6194–6206

    Article  CAS  PubMed  Google Scholar 

  8. Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13(15):1899–1911

    Article  CAS  PubMed  Google Scholar 

  9. Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281(5381):1322–1326

    Article  CAS  PubMed  Google Scholar 

  10. Reed JC (1998) Bcl-2 family proteins. Oncogene 17(25):3225–3236

    Article  PubMed  Google Scholar 

  11. Siddiqui WA, Ahad A, Ahsan H (2015) The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Arch Toxicol 89(3):289–317

    Article  CAS  PubMed  Google Scholar 

  12. Adams JM, Cory S (2001) Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci 26(1):61–66

    Article  CAS  PubMed  Google Scholar 

  13. Borner C (2003) The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions. Mol Immunol 39(11):615–647

    Article  CAS  PubMed  Google Scholar 

  14. Tsujimoto Y, Shimizu S (2000) Bcl-2 family: life-or-death switch. FEBS Lett 466(1):6–10

    Article  CAS  PubMed  Google Scholar 

  15. Kelekar A, Thompson CB (1998) Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol 8(8):324–330

    Article  CAS  PubMed  Google Scholar 

  16. Nguyen M, Millar DG, Yong VW, Korsmeyer SJ, Shore GC (1993) Targeting of Bcl-2 to the mitochondrial outer membrane by a COOH-terminal signal anchor sequence. J Biol Chem 268(34):25265–25268

    CAS  PubMed  Google Scholar 

  17. van Delft MF, Huang DC (2006) How the Bcl-2 family of proteins interact to regulate apoptosis. Cell Res 16(2):203–213

    Article  PubMed  Google Scholar 

  18. Zhou L, Chang DC (2008) Dynamics and structure of the Bax-Bak complex responsible for releasing mitochondrial proteins during apoptosis. J Cell Sci 121(Pt 13):2186–2196

    Article  CAS  PubMed  Google Scholar 

  19. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292(5517):727–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zong WX, Lindsten T, Ross AJ, MacGregor GR, Thompson CB (2001) BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev 15(12):1481–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Deng Y, Lin Y, Wu X (2002) TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev 16(1):33–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Finucane DM, Bossy-Wetzel E, Waterhouse NJ, Cotter TG, Green DR (1999) Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J Biol Chem 274(4):2225–2233

    Article  CAS  PubMed  Google Scholar 

  23. Gross A, Yin XM, Wang K, Wei MC, Jockel J, Milliman C, Erdjument-Bromage H, Tempst P, Korsmeyer SJ (1999) Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem 274(2):1156–1163

    Article  CAS  PubMed  Google Scholar 

  24. Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, Korsmeyer SJ (2001) BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8(3):705–711

    Article  CAS  PubMed  Google Scholar 

  25. Ruffolo SC, Shore GC (2003) BCL-2 selectively interacts with the BID-induced open conformer of BAK, inhibiting BAK auto-oligomerization. J Biol Chem 278(27):25039–25045

    Article  CAS  PubMed  Google Scholar 

  26. Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI, Adams JM, Huang DC (2005) Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 19(11):1294–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X, Dawson MI, Reed JC, Zhang XK (2004) Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 116(4):527–540

    Article  CAS  PubMed  Google Scholar 

  28. Chen G, Deng X (2015) Targeting Bcl2 in cancer. Oncoscience 2(10):813–814

    PubMed  PubMed Central  Google Scholar 

  29. Cheng EH, Kirsch DG, Clem RJ, Ravi R, Kastan MB, Bedi A, Ueno K, Hardwick JM (1997) Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278(5345):1966–1968

    Article  CAS  PubMed  Google Scholar 

  30. Clohessy JG, Zhuang J, Brady HJ (2004) Characterisation of Mcl-1 cleavage during apoptosis of haematopoietic cells. Br J Haematol 125(5):655–665

    Article  CAS  PubMed  Google Scholar 

  31. Fujita N, Nagahashi A, Nagashima K, Rokudai S, Tsuruo T (1998) Acceleration of apoptotic cell death after the cleavage of Bcl-XL protein by caspase-3-like proteases. Oncogene 17(10):1295–1304

    Article  CAS  PubMed  Google Scholar 

  32. Jonas EA, Hickman JA, Chachar M, Polster BM, Brandt TA, Fannjiang Y, Ivanovska I, Basanez G, Kinnally KW, Zimmerberg J, Hardwick JM, Kaczmarek LK (2004) Proapoptotic N-truncated BCL-xL protein activates endogenous mitochondrial channels in living synaptic terminals. Proc Natl Acad Sci USA 101(37):13590–13595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Basanez G, Zhang J, Chau BN, Maksaev GI, Frolov VA, Brandt TA, Burch J, Hardwick JM, Zimmerberg J (2001) Pro-apoptotic cleavage products of Bcl-xL form cytochrome c-conducting pores in pure lipid membranes. J Biol Chem 276(33):31083–31091

    Article  CAS  PubMed  Google Scholar 

  34. Alirol E, James D, Huber D, Marchetto A, Vergani L, Martinou JC, Scorrano L (2006) The mitochondrial fission protein hFis1 requires the endoplasmic reticulum gateway to induce apoptosis. Mol Biol Cell 17(11):4593–4605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xiao K, Wang Y, Chang Z, Lao Y, Chang DC (2014) p32, a novel binding partner of Mcl-1, positively regulates mitochondrial Ca(2 +) uptake and apoptosis. Biochem Biophys Res Commun 451(2):322–328

    Article  CAS  PubMed  Google Scholar 

  36. Xiao K, Chen P, Chang DC (2014) The VTLISFG motif in the BH1 domain plays a significant role in regulating the degradation of Mcl-1. FEBS Open Bio 4:147–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kall L, Krogh A, Sonnhammer EL (2007) Advantages of combined transmembrane topology and signal peptide prediction–the Phobius web server. Nucleic Acids Res 35(Web Server issue):W429–W432

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kall L, Krogh A, Sonnhammer EL (2005) An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics 21(Suppl 1):i251–i257

    Article  PubMed  Google Scholar 

  39. Leber B, Lin J, Andrews DW (2007) Embedded together: the life and death consequences of interaction of the Bcl-2 family with membranes. Apoptosis 12(5):897–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang DC, Adams JM, Cory S (1998) The conserved N-terminal BH4 domain of Bcl-2 homologues is essential for inhibition of apoptosis and interaction with CED-4. EMBO J 17(4):1029–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hirotani M, Zhang Y, Fujita N, Naito M, Tsuruo T (1999) NH2-terminal BH4 domain of Bcl-2 is functional for heterodimerization with Bax and inhibition of apoptosis. J Biol Chem 274(29):20415–20420

    Article  CAS  PubMed  Google Scholar 

  42. Rong YP, Bultynck G, Aromolaran AS, Zhong F, Parys JB, De Smedt H, Mignery GA, Roderick HL, Bootman MD, Distelhorst CW (2009) The BH4 domain of Bcl-2 inhibits ER calcium release and apoptosis by binding the regulatory and coupling domain of the IP3 receptor. Proc Natl Acad Sci USA 106(34):14397–14402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sugioka R, Shimizu S, Funatsu T, Tamagawa H, Sawa Y, Kawakami T, Tsujimoto Y (2003) BH4-domain peptide from Bcl-xL exerts anti-apoptotic activity in vivo. Oncogene 22(52):8432–8440

    Article  CAS  PubMed  Google Scholar 

  44. Denis GV, Yu Q, Ma P, Deeds L, Faller DV, Chen CY (2003) Bcl-2, via its BH4 domain, blocks apoptotic signaling mediated by mitochondrial Ras. J Biol Chem 278(8):5775–5785

    Article  CAS  PubMed  Google Scholar 

  45. Shimizu S, Konishi A, Kodama T, Tsujimoto Y (2000) BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc Natl Acad Sci USA 97(7):3100–3105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Krajewski S, Tanaka S, Takayama S, Schibler MJ, Fenton W, Reed JC (1993) Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res 53(19):4701–4714

    CAS  PubMed  Google Scholar 

  47. Kaufmann T, Schlipf S, Sanz J, Neubert K, Stein R, Borner C (2003) Characterization of the signal that directs Bcl-x(L), but not Bcl-2, to the mitochondrial outer membrane. J Cell Biol 160(1):53–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Petros AM, Olejniczak ET, Fesik SW (2004) Structural biology of the Bcl-2 family of proteins. Biochim Biophys Acta 1644(2–3):83–94

    Article  CAS  PubMed  Google Scholar 

  49. George NM, Evans JJ, Luo X (2007) A three-helix homo-oligomerization domain containing BH3 and BH1 is responsible for the apoptotic activity of Bax. Genes Dev 21(15):1937–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Petros AM, Medek A, Nettesheim DG, Kim DH, Yoon HS, Swift K, Matayoshi ED, Oltersdorf T, Fesik SW (2001) Solution structure of the antiapoptotic protein bcl-2. Proc Natl Acad Sci USA 98(6):3012–3017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, Nettesheim D, Chang BS, Thompson CB, Wong SL, Ng SL, Fesik SW (1996) X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381(6580):335–341

    Article  CAS  PubMed  Google Scholar 

  52. Oh KJ, Singh P, Lee K, Foss K, Lee S, Park M, Lee S, Aluvila S, Park M, Singh P, Kim RS, Symersky J, Walters DE (2010) Conformational changes in BAK, a pore-forming proapoptotic Bcl-2 family member, upon membrane insertion and direct evidence for the existence of BH3-BH3 contact interface in BAK homo-oligomers. J Biol Chem 285(37):28924–28937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nouraini S, Six E, Matsuyama S, Krajewski S, Reed JC (2000) The putative pore-forming domain of Bax regulates mitochondrial localization and interaction with Bcl-X(L). Mol Cell Biol 20(5):1604–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dlugosz PJ, Billen LP, Annis MG, Zhu W, Zhang Z, Lin J, Leber B, Andrews DW (2006) Bcl-2 changes conformation to inhibit Bax oligomerization. EMBO J 25(11):2287–2296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Billen LP, Kokoski CL, Lovell JF, Leber B, Andrews DW (2008) Bcl-XL inhibits membrane permeabilization by competing with Bax. PLoS Biol 6(6):e147

    Article  PubMed  PubMed Central  Google Scholar 

  56. Annis MG, Soucie EL, Dlugosz PJ, Cruz-Aguado JA, Penn LZ, Leber B, Andrews DW (2005) Bax forms multispanning monomers that oligomerize to permeabilize membranes during apoptosis. EMBO J 24(12):2096–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schinzel A, Kaufmann T, Schuler M, Martinalbo J, Grubb D, Borner C (2004) Conformational control of Bax localization and apoptotic activity by Pro168. J Cell Biol 164(7):1021–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Griffiths GJ, Dubrez L, Morgan CP, Jones NA, Whitehouse J, Corfe BM, Dive C, Hickman JA (1999) Cell damage-induced conformational changes of the pro-apoptotic protein Bak in vivo precede the onset of apoptosis. J Cell Biol 144(5):903–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Barclay LA, Wales TE, Garner TP, Wachter F, Lee S, Guerra RM, Stewart ML, Braun CR, Bird GH, Gavathiotis E, Engen JR, Walensky LD (2015) Inhibition of pro-apoptotic BAX by a noncanonical interaction mechanism. Mol Cell 57(5):873–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Monaco G, Decrock E, Akl H, Ponsaerts R, Vervliet T, Luyten T, De Maeyer M, Missiaen L, Distelhorst CW, De Smedt H, Parys JB, Leybaert L, Bultynck G (2012) Selective regulation of IP3-receptor-mediated Ca2 + signaling and apoptosis by the BH4 domain of Bcl-2 versus Bcl-Xl. Cell Death Differ 19(2):295–309

    Article  CAS  PubMed  Google Scholar 

  61. Monaco G, Decrock E, Arbel N, van Vliet AR, La Rovere RM, De Smedt H, Parys JB, Agostinis P, Leybaert L, Shoshan-Barmatz V, Bultynck G (2015) The BH4 domain of anti-apoptotic Bcl-XL, but not that of the related Bcl-2, limits the voltage-dependent anion channel 1 (VDAC1)-mediated transfer of pro-apoptotic Ca2+ signals to mitochondria. J Biol Chem 290(14):9150–9161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I, Bernasconi L, Bernard A, Mermod JJ, Mazzei G, Maundrell K, Gambale F, Sadoul R, Martinou JC (1997) Inhibition of Bax channel-forming activity by Bcl-2. Science 277(5324):370–372

    Article  CAS  PubMed  Google Scholar 

  63. Schendel SL, Xie Z, Montal MO, Matsuyama S, Montal M, Reed JC (1997) Channel formation by antiapoptotic protein Bcl-2. Proc Natl Acad Sci USA 94(10):5113–5118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Minn AJ, Velez P, Schendel SL, Liang H, Muchmore SW, Fesik SW, Fill M, Thompson CB (1997) Bcl-x(L) forms an ion channel in synthetic lipid membranes. Nature 385(6614):353–357

    Article  CAS  PubMed  Google Scholar 

  65. Antonsson B, Montessuit S, Lauper S, Eskes R, Martinou JC (2000) Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J 345(Pt 2):271–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lalier L, Cartron PF, Juin P, Nedelkina S, Manon S, Bechinger B, Vallette FM (2007) Bax activation and mitochondrial insertion during apoptosis. Apoptosis 12(5):887–896

    Article  CAS  PubMed  Google Scholar 

  67. Azad A, Storey A (2013) BAK multimerization for apoptosis, but not bid binding, is inhibited by negatively charged residue in the BAK hydrophobic groove. Mol Cancer 12:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cartron PF, Gallenne T, Bougras G, Gautier F, Manero F, Vusio P, Meflah K, Vallette FM, Juin P (2004) The first alpha helix of Bax plays a necessary role in its ligand-induced activation by the BH3-only proteins Bid and PUMA. Mol Cell 16(5):807–818

    Article  CAS  PubMed  Google Scholar 

  69. Szabo I, Soddemann M, Leanza L, Zoratti M, Gulbins E (2011) Single-point mutations of a lysine residue change function of Bax and Bcl-xL expressed in Bax- and Bak-less mouse embryonic fibroblasts: novel insights into the molecular mechanisms of Bax-induced apoptosis. Cell Death Differ 18(3):427–438

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We want to thank Dr. Y. Tsujimoto for kindly supplying us the pRSET-Bax gene, Dr. Richard J. Youle for providing the YFP-Bak and pEGFP-Bcl-xL genes, Dr. Steven W. Edwards for providing pEGFP-C3-Mcl-1 gene, Dr. Yong Xie for providing Bcl-2 gene, and Dr. L. Scorrano for providing the MEF and MEF-DKO cell lines. This work was supported by grants from the Research Grants Council of Hong Kong (HKUST6466/05 M, N_HKUST616/05 and 660207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald Choy Chang.

Additional information

Kang Xiao, Wenrui Zhao have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, K., Zhao, W., Zhou, L. et al. Alpha 5/6 helix domains together with N-terminus determine the apoptotic potency of the Bcl-2 family proteins. Apoptosis 21, 1214–1226 (2016). https://doi.org/10.1007/s10495-016-1283-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1283-9

Keywords

Navigation