Skip to main content
Log in

The sesquiterpene (−)-α-bisabolol is active against the causative agents of Old World cutaneous leishmaniasis through the induction of mitochondrial-dependent apoptosis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Cutaneous leishmaniasis treatment remains challenging due to the absence of a satisfactory treatment. The screening of natural compounds is a valuable strategy in the search of new drugs against leishmaniasis. The sesquiterpene (−)-α-bisabolol is effective in vivo against visceral leishmaniasis due to Leishmania infantum, but its mechanism of action remains elusive. The aim of this study is to validate this promising compound against the causative species of Old World cutaneous leishmaniasis and to get an insight into its antileishmanial mode of action. The compound was evaluated on L. tropica promastigotes and intracellular amastigotes using bone marrow-derived macrophages and its cytotoxicity was evaluated on L929 fibroblasts. The reactive oxygen species generation was evaluated using a sensitive probe. Mitochondrial depolarization was assessed evaluating the fluorescence due to rhodamine 123 in a flow cytometer. Apoptosis was investigated by measuring the fluorescence due to annexin V and propidium iodide in a flow cytometer. The ultrastructure of treated promastigotes and intracellular amastigotes was analysed through transmission electron microscopy. (−)-α-Bisabolol was active against L. tropica intracellular amastigotes displaying an inhibitory concentration 50 % of 25.2 µM and showing low cytotoxicity. This compound induced time and dose-dependent oxidative stress, mitochondrial depolarization and phosphatidilserine externalization (a marker of apoptosis). These effects were noticed at a low concentration and short exposure time. In the ultrastructural analyses, the treated parasites showed mitochondrial disruption, presence of electron-dense structures and chromatin condensation. These results suggest that this natural compound induces oxidative stress and mitochondrial-dependent apoptosis on Leishmania without disturbing the plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reithinger R, Dujardin J-C, Louzir H et al (2007) Cutaneous leishmaniasis. Lancet Infect Dis 7:581–596. doi:10.1016/S1473-3099(07)70209-8

    Article  PubMed  Google Scholar 

  2. Pratlong F, Dereure J, Ravel C et al (2009) Geographical distribution and epidemiological features of Old World cutaneous leishmaniasis foci, based on the isoenzyme analysis of 1048 strains. Trop Med Int Heal 14:1071–1085. doi:10.1111/j.1365-3156.2009.02336.x

    Article  Google Scholar 

  3. Aliaga L, Cobo F, Mediavilla JD et al (2003) Localized mucosal leishmaniasis due to Leishmania (Leishmania) infantum: clinical and microbiologic findings in 31 patients. Medicine (Baltimore) 82:147–158. doi:10.1097/01.md.0000076009.64510.b8

    Google Scholar 

  4. Faucher B, Pomares C, Fourcade S et al (2011) Mucosal Leishmania infantum leishmaniasis: specific pattern in a multicentre survey and historical cases. J Infect 63:76–82. doi:10.1016/j.jinf.2011.03.012

    Article  PubMed  Google Scholar 

  5. Monge-Maillo B, López-Vélez R (2013) Therapeutic options for old world cutaneous leishmaniasis and new world cutaneous and mucocutaneous leishmaniasis. Drugs 73:1889–1920. doi:10.1007/s40265-013-0132-1

    Article  CAS  PubMed  Google Scholar 

  6. Mears ER, Modabber F, Don R, Johnson GE (2015) A review: the current in vivo models for the discovery and utility of new anti-leishmanial drugs targeting cutaneous leishmaniasis. PLoS Negl Trop Dis 9:e0003889. doi:10.1371/journal.pntd.0003889

    Article  PubMed  PubMed Central  Google Scholar 

  7. Morales-Yuste M, Morillas-Márquez F, Martín-Sánchez J et al (2010) Activity of (−)alpha-bisabolol against Leishmania infantum promastigotes. Phytomedicine 17:279–281. doi:10.1016/j.phymed.2009.05.019

    Article  CAS  PubMed  Google Scholar 

  8. Rottini MM, Amaral ACF, Ferreira JLP et al (2015) In vitro evaluation of (−)α-bisabolol as a promising agent against Leishmania amazonensis. Exp Parasitol 148:66–72. doi:10.1016/j.exppara.2014.10.001

    Article  CAS  PubMed  Google Scholar 

  9. Colares AV, Almeida-Souza F, Taniwaki NN et al (2013) In vitro antileishmanial activity of essential oil of Vanillosmopsis arborea (Asteraceae) baker. Evid Based Complement Alternat Med 2013:1–7. doi:10.1155/2013/727042

    Article  Google Scholar 

  10. Corpas-López V, Morillas-Márquez F, Navarro-Moll MC et al (2015) (−)-α-Bisabolol, a promising oral compound for the treatment of visceral leishmaniasis. J Nat Prod 78:1202–1207. doi:10.1021/np5008697

    Article  PubMed  Google Scholar 

  11. Maurya AK, Singh M, Dubey V et al (2014) α-(−)-bisabolol reduces pro-inflammatory cytokine production and ameliorates skin inflammation. Curr Pharm Biotechnol 15:173–181. doi:10.2174/1389201015666140528152946

    Article  CAS  PubMed  Google Scholar 

  12. Forrer M, Kulik EM, Filippi A, Waltimo T (2013) The antimicrobial activity of alpha-bisabolol and tea tree oil against Solobacterium moorei, a Gram-positive bacterium associated with halitosis. Arch Oral Biol 58:10–16. doi:10.1016/j.archoralbio.2012.08.001

    Article  CAS  PubMed  Google Scholar 

  13. Bhatia SP, McGinty D, Letizia CS, Api AM (2008) Fragrance material review on alpha-bisabolol. Food Chem Toxicol 46(Suppl 1):S72–S76. doi:10.1016/j.fct.2008.06.025

    Article  CAS  PubMed  Google Scholar 

  14. Andersen FA (1999) Final report on the safety assessment of bisabolol. Int J Toxicol 18:33–40. doi:10.1177/109158189901800305

    Article  Google Scholar 

  15. Ganzera M, Schneider P, Stuppner H (2006) Inhibitory effects of the essential oil of chamomile (Matricaria recutita L.) and its major constituents on human cytochrome P450 enzymes. Life Sci 78:856–861. doi:10.1016/j.lfs.2005.05.095

    Article  CAS  PubMed  Google Scholar 

  16. Pauli A (2006) α-Bisabolol from Chamomile—A specific ergosterol biosynthesis inhibitor? Int J Aromather 16:21–25. doi:10.1016/j.ijat.2006.01.002

    Article  CAS  Google Scholar 

  17. Chen W, Hou J, Yin Y et al (2010) Alpha-Bisabolol induces dose- and time-dependent apoptosis in HepG2 cells via a Fas- and mitochondrial-related pathway, involves p53 and NFkappaB. Biochem Pharmacol 80:247–254. doi:10.1016/j.bcp.2010.03.021

    Article  CAS  PubMed  Google Scholar 

  18. Zamboni DS, Rabinovitch M (2003) Nitric oxide partially controls Coxiella burnetii phase II infection in mouse primary macrophages. Infect Immun 71:1225–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Carvalho L, Luque-Ortega JR, López-Martín C et al (2011) The 8-aminoquinoline analogue sitamaquine causes oxidative stress in Leishmania donovani promastigotes by targeting succinate dehydrogenase. Antimicrob Agents Chemother 55:4204–4210. doi:10.1128/AAC.00520-11

    Article  CAS  PubMed  Google Scholar 

  20. Escobar P, Matu S, Marques C, Croft SL (2002) Sensitivities of Leishmania species to hexadecylphosphocholine (miltefosine), ET-18-OCH(3) (edelfosine) and amphotericin B. Acta Trop 81:151–157

    Article  CAS  PubMed  Google Scholar 

  21. Fidalgo LM, Gille L (2011) Mitochondria and trypanosomatids: targets and drugs. Pharm Res 28:2758–2770. doi:10.1007/s11095-011-0586-3

    Article  CAS  PubMed  Google Scholar 

  22. Kathuria M, Bhattacharjee A, Sashidhara KV et al (2014) Induction of mitochondrial dysfunction and oxidative stress in Leishmania donovani by orally active clerodane diterpene. Antimicrob Agents Chemother 58:5916–5928. doi:10.1128/AAC.02459-14

    Article  PubMed  PubMed Central  Google Scholar 

  23. Murphy MP (2013) Mitochondrial dysfunction indirectly elevates ROS production by the endoplasmic reticulum. Cell Metab 18:145–146. doi:10.1016/j.cmet.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  24. Cavalieri E, Mariotto S, Fabrizi C et al (2004) Alpha-Bisabolol, a nontoxic natural compound, strongly induces apoptosis in glioma cells. Biochem Biophys Res Commun 315:589–594. doi:10.1016/j.bbrc.2004.01.088

    Article  CAS  PubMed  Google Scholar 

  25. Cavalieri E, Bergamini C, Mariotto S et al (2009) Involvement of mitochondrial permeability transition pore opening in alpha-bisabolol induced apoptosis. FEBS J 276:3990–4000. doi:10.1111/j.1742-4658.2009.07108.x

    Article  CAS  PubMed  Google Scholar 

  26. Cui L, Su X (2009) Discovery, mechanisms of action and combination therapy of artemisinin. Expert Rev Anti Infect Ther 7:999–1013. doi:10.1586/eri.09.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rigo A, Vinante F (2016) The antineoplastic agent α-bisabolol promotes cell death by inducing pores in mitochondria and lysosomes. Apoptosis 21:917–927. doi:10.1007/s10495-016-1257-y

    Article  CAS  PubMed  Google Scholar 

  28. Lorente SO, Rodrigues JCF, Jiménez Jiménez C et al (2004) Novel azasterols as potential agents for treatment of leishmaniasis and trypanosomiasis. Antimicrob Agents Chemother 48:2937–2950. doi:10.1128/AAC.48.8.2937-2950.2004

    Article  PubMed  PubMed Central  Google Scholar 

  29. Thompson ED, Bailey RB, Parks LW (1974) Subcellular location of S-adenosylmethionine: Δ24 sterol methyltransferase in Saccharomyces cerevisiae. Biochim Biophys Acta Enzymol 334:116–126. doi:10.1016/0005-2744(74)90155-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Montserrat Gállego (University of Barcelona) and Dr. Pratlong (University of Montpellier) for kindly donating the Leishmania strains used in this work and the CIC (University of Granada) for facilitating the use of his transmission electron microscope and flow cytometer.

Funding

This work was supported by the Project PI14-01024, Ministry of Economy and Competitiveness, Instituto de Salud Carlos III, Madrid and Feder Funds for Regional Development from the European Union, “One way to make Europe”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Corpas-López.

Ethics declarations

Conflict of interest

The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethical approval

All applicable European guidelines for the care and use of animals were followed (Directive 2010/63/EU on the protection of animals used for scientific purposes). All experiments were approved by the Ethics Committee of Animal Experimentation of the University of Granada (CEEA 455-2013).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corpas-López, V., Merino-Espinosa, G., Díaz-Sáez, V. et al. The sesquiterpene (−)-α-bisabolol is active against the causative agents of Old World cutaneous leishmaniasis through the induction of mitochondrial-dependent apoptosis. Apoptosis 21, 1071–1081 (2016). https://doi.org/10.1007/s10495-016-1282-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1282-x

Keywords

Navigation