Skip to main content
Log in

Atorvastatin inhibits the apoptosis of human umbilical vein endothelial cells induced by angiotensin II via the lysosomal-mitochondrial axis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

This study was aimed to evaluate lysosomes–mitochondria cross-signaling in angiotensin II (Ang II)-induced apoptosis of human umbilical vein endothelial cells (HUVECs) and whether atorvastatin played a protective role via lysosomal-mitochondrial axis. Apoptosis was detected by flow cytometry, Hoechst 33342 and AO/EB assay. The temporal relationship of lysosomal and mitochondrial permeabilization was established. Activity of Cathepsin D (CTSD) was suppressed by pharmacological and genetic approaches. Proteins production were measured by western blotting. Our study showed that Ang II could induce the apoptosis of HUVECs in a dose-depended and time-depended manner. Exposure to 1 μM Ang II for 24 h resulted in mitochondrial depolarization, cytochrome c release, and increased ROS production. Lysosomal permeabilization and CTSD redistribution into the cytoplasm occurred several hours prior to mitochondrial dysfunction. These effects were all suppressed by atorvastatin. Either pharmacological or genetic inhibition of CTSD preserved mitochondrial function and decreased apoptosis in HUVECs. Most importantly, we found that the protective effect of atorvastatin was significantly greater than pharmacological or genetic inhibition of CTSD. Finally, overexpression of CTSD without exposure to Ang II had no effect on mitochondrial function and apoptosis. Our data strongly suggested that Ang II induced apoptosis through the lysosomal-mitochondrial axis in HUVECs. Furthermore, atorvastatin played an important role in the regulation of lysosomes and mitochondria stability, resulting in an antagonistic role against Ang II on HUVECs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Whaley-Connell A, Johnson MS, Sowers JR (2010) Aldosterone: role in the cardiometabolic syndrome and resistant hypertension. Prog Cardiovasc Dis 52(5):401–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aroor AR, Demarco VG, Jia G, Sun Z, Nistala R, Meininger GA, Sowers JR (2013) The role of tissue Renin-Angiotensin-aldosterone system in the development of endothelial dysfunction and arterial stiffness. Front Endocrinol 4:161

    Article  Google Scholar 

  3. Schiffrin EL, Touyz RM (2004) From bedside to bench to bedside: role of renin-angiotensin-aldosterone system in remodeling of resistance arteries in hypertension. Am J Physiol Heart Circ Physiol 287(2):H435–H446

    Article  CAS  PubMed  Google Scholar 

  4. Touyz RM (2003) The role of angiotensin II in regulating vascular structural and functional changes in hypertension. Curr Hypertens Rep 5(2):155–164

    Article  PubMed  Google Scholar 

  5. Sata M, Fukuda D (2010) Crucial role of renin-angiotensin system in the pathogenesis of atherosclerosis. J Med Invest 57(1–2):12–25

    Article  PubMed  Google Scholar 

  6. Pan MH, Hsieh MC, Kuo JM, Lai CS, Wu H, Sang S, Ho CT (2008) 6-Shogaol induces apoptosis in human colorectal carcinoma cells via ROS production, caspase activation, and GADD 153 expression. Mol Nutr Food Res 52(5):527–537

    Article  CAS  PubMed  Google Scholar 

  7. Bouchier-Hayes L, Lartigue L, Newmeyer DD (2005) Mitochondria: pharmacological manipulation of cell death. J Clin Investig 115(10):2640–2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lane N (2006) Mitochondrial disease: powerhouse of disease. Nature 440(7084):600–602

    Article  CAS  PubMed  Google Scholar 

  9. Yang HY, Bian YF, Zhang HP, Gao F, Xiao CS, Liang B, Li J, Zhang NN, Yang ZM (2012) Angiotensin-(1-7) treatment ameliorates angiotensin II-induced apoptosis of human umbilical vein endothelial cells. Clin Exp Pharmacol Physiol 39(12):1004–1010

    Article  CAS  PubMed  Google Scholar 

  10. Ahsan A, Han G, Pan J, Liu S, Padhiar AA, Chu P, Sun Z, Zhang Z, Sun B, Wu J, Irshad A, Lin Y, Peng J, Tang Z (2015) Phosphocreatine protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by modulating the PI3 K/Akt/eNOS pathway. Apoptosis 20(12):1563–1576

    Article  CAS  PubMed  Google Scholar 

  11. Surico D, Farruggio S, Marotta P, Raina G, Mary D, Surico N, Vacca G, Grossini E (2015) Human chorionic gonadotropin protects vascular endothelial cells from oxidative stress by apoptosis inhibition, cell survival signalling activation and mitochondrial function protection. Cell Physiol Biochem 36(6):2108–2120

    Article  CAS  PubMed  Google Scholar 

  12. Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2(8):589–598

    Article  CAS  PubMed  Google Scholar 

  13. Guicciardi ME, Leist M, Gores GJ (2004) Lysosomes in cell death. Oncogene 23(16):2881–2890

    Article  CAS  PubMed  Google Scholar 

  14. Davignon J (2004) Beneficial cardiovascular pleiotropic effects of statins. Circulation 109(23 Suppl 1):III39–III43

    PubMed  Google Scholar 

  15. Carnicka S, Adameova A, Nemcekova M, Matejikova J, Pancza D, Ravingerova T (2011) Distinct effects of acute pretreatment with lipophilic and hydrophilic statins on myocardial stunning, arrhythmias and lethal injury in the rat heart subjected to ischemia/reperfusion. Physiol Res 60(5):825–830

    CAS  PubMed  Google Scholar 

  16. Guimaraes DA, Rizzi E, Ceron CS, Pinheiro LC, Gerlach RF, Tanus-Santos JE (2013) Atorvastatin and sildenafil lower blood pressure and improve endothelial dysfunction, but only atorvastatin increases vascular stores of nitric oxide in hypertension. Redox Biol 1:578–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou MS, Tian R, Jaimes EA, Raij L (2014) Combination therapy of amlodipine and atorvastatin has more beneficial vascular effects than monotherapy in salt-sensitive hypertension. Am J Hypertens 27(6):873–880

    Article  CAS  PubMed  Google Scholar 

  18. Chen S, Liu B, Kong D, Li S, Li C, Wang H, Sun Y (2015) Atorvastatin calcium inhibits phenotypic modulation of PDGF-BB-induced VSMCs via down-regulation the Akt signaling pathway. PLoS One 10(4):e0122577

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yang G, Wang S, Zhong L, Dong X, Zhang W, Jiang L, Geng C, Sun X, Liu X, Chen M, Ma Y (2012) 6-Gingerol induces apoptosis through lysosomal-mitochondrial axis in human hepatoma G2 cells. Phytother Res 26(11):1667–1673

    Article  CAS  PubMed  Google Scholar 

  20. Mitrofan LM, Castells FB, Pelkonen J, Monkkonen J (2010) Lysosomal-mitochondrial axis in zoledronic acid-induced apoptosis in human follicular lymphoma cells. J Biol Chem 285(3):1967–1979

    Article  CAS  PubMed  Google Scholar 

  21. Byczkowska A, Kunikowska A, Kazmierczak A (2013) Determination of ACC-induced cell-programmed death in roots of Vicia faba ssp. minor seedlings by acridine orange and ethidium bromide staining. Protoplasma 250(1):121–128

    Article  CAS  PubMed  Google Scholar 

  22. Rybaczek D, Musialek MW, Balcerczyk A (2015) caffeine-induced premature chromosome condensation results in the apoptosis-like programmed cell death in root meristems of vicia faba. PLoS One 10(11):e0142307

    Article  PubMed  PubMed Central  Google Scholar 

  23. He Y, Mo Q, Hu Y, Chen W, Luo B, Wu L, Qiao Y, Xu R, Zhou Y, Zuo Z, Deng J, He W, Wei Y (2015) E. adenophorum induces cell cycle arrest and apoptosis of splenocytes through the mitochondrial pathway and caspase activation in saanen goats. Sci Rep 5:15967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li Z, Berk M, McIntyre TM, Gores GJ, Feldstein AE (2008) The lysosomal-mitochondrial axis in free fatty acid-induced hepatic lipotoxicity. Hepatology 47(5):1495–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gottlieb E, Armour SM, Harris MH, Thompson CB (2003) Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ 10(6):709–717

    Article  CAS  PubMed  Google Scholar 

  26. Lei T, Guo N, Tan MH, Li YF (2014) Effect of mouse oocyte vitrification on mitochondrial membrane potential and distribution. J Huazhong Univ Sci Technol Med Sci 34(1):99–102

    Article  CAS  PubMed  Google Scholar 

  27. Sohn JH, Han KL, Lee SH, Hwang JK (2005) Protective effects of panduratin A against oxidative damage of tert-butylhydroperoxide in human HepG2 cells. Biol Pharm Bull 28(6):1083–1086

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Liu Y, Liu X, Jiang L, Yang G, Sun X, Geng C, Li Q, Yao X, Chen M (2015) Citreoviridin induces autophagy-dependent apoptosis through lysosomal-mitochondrial axis in human liver HepG2 Cells. Toxins 7(8):3030–3044

    Article  PubMed  PubMed Central  Google Scholar 

  29. Boya P, Kroemer G (2008) Lysosomal membrane permeabilization in cell death. Oncogene 27(50):6434–6451

    Article  CAS  PubMed  Google Scholar 

  30. Green DR (2005) Apoptotic pathways: ten minutes to dead. Cell 121(5):671–674

    Article  CAS  PubMed  Google Scholar 

  31. De Duve C, Wattiaux R (1966) Functions of lysosomes. Annu Rev Physiol 28:435–492

    Article  PubMed  Google Scholar 

  32. Terman A, Gustafsson B, Brunk UT (2006) The lysosomal-mitochondrial axis theory of postmitotic aging and cell death. Chem Biol Interact 163(1–2):29–37

    Article  CAS  PubMed  Google Scholar 

  33. Mizushima N, Ohsumi Y, Yoshimori T (2002) Autophagosome formation in mammalian cells. Cell Struct Funct 27(6):421–429

    Article  PubMed  Google Scholar 

  34. Mishima Y, Terui Y, Mishima Y, Taniyama A, Kuniyoshi R, Takizawa T, Kimura S, Ozawa K, Hatake K (2008) Autophagy and autophagic cell death are next targets for elimination of the resistance to tyrosine kinase inhibitors. Cancer Sci 99(11):2200–2208

    Article  CAS  PubMed  Google Scholar 

  35. Roberg K, Ollinger K (1998) Oxidative stress causes relocation of the lysosomal enzyme cathepsin D with ensuing apoptosis in neonatal rat cardiomyocytes. Am J Pathol 152(5):1151–1156

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kagedal K, Johansson U, Ollinger K (2001) The lysosomal protease cathepsin D mediates apoptosis induced by oxidative stress. FASEB J 15(9):1592–1594

    CAS  PubMed  Google Scholar 

  37. Brunk UT, Neuzil J, Eaton JW (2001) Lysosomal involvement in apoptosis. Redox report: communications in free radical research 6(2):91–97

    Article  CAS  PubMed  Google Scholar 

  38. Gigli R, Pereira GJ, Antunes F, Bechara A, Garcia DM, Spindola DG, Jasiulionis MG, Caires AC, Smaili SS, Bincoletto C (2016) The biphosphinic paladacycle complex induces melanoma cell death through lysosomal-mitochondrial axis modulation and impaired autophagy. Eur J Med Chem 107:245–254

    Article  CAS  PubMed  Google Scholar 

  39. Turk V, Turk B, Guncar G, Turk D, Kos J (2002) Lysosomal cathepsins: structure, role in antigen processing and presentation, and cancer. Adv Enzyme Regul 42:285–303

    Article  CAS  PubMed  Google Scholar 

  40. Graham DJ, Staffa JA, Shatin D, Andrade SE, Schech SD, La Grenade L, Gurwitz JH, Chan KA, Goodman MJ, Platt R (2004) Incidence of hospitalized rhabdomyolysis in patients treated with lipid-lowering drugs. JAMA 292(21):2585–2590

    Article  CAS  PubMed  Google Scholar 

  41. Sathasivam S (2012) Statin induced myotoxicity. E J Int Med 23(4):317–324

    Article  CAS  Google Scholar 

  42. Mabuchi H, Higashikata T, Kawashiri M, Katsuda S, Mizuno M, Nohara A, Inazu A, Koizumi J, Kobayashi J (2005) Reduction of serum ubiquinol-10 and ubiquinone-10 levels by atorvastatin in hypercholesterolemic patients. J Atheroscler Thrombosis 12(2):111–119

    Article  CAS  Google Scholar 

  43. Vaughan RA, Garcia-Smith R, Bisoffi M, Conn CA, Trujillo KA (2013) Ubiquinol rescues simvastatin-suppression of mitochondrial content, function and metabolism: implications for statin-induced rhabdomyolysis. Eur J Pharmacol 711(1–3):1–9

    Article  CAS  PubMed  Google Scholar 

  44. Ghavami S, Yeganeh B, Stelmack GL, Kashani HH, Sharma P, Cunnington R, Rattan S, Bathe K, Klonisch T, Dixon IM, Freed DH, Halayko AJ (2012) Apoptosis, autophagy and ER stress in mevalonate cascade inhibition-induced cell death of human atrial fibroblasts. Cell Death Dis 3:e330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mullen PJ, Zahno A, Lindinger P, Maseneni S, Felser A, Krahenbuhl S, Brecht K (2011) Susceptibility to simvastatin-induced toxicity is partly determined by mitochondrial respiration and phosphorylation state of Akt. Biochim Biophys Acta 12:2079–2087

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China [Grant No. 81470417] and Natural Science Foundation of Liaoning Province [Grant No. 2013021090].

Author Contributions

Ye Chang, Zhao Li and Yingxian Sun conceived and designed the experiments; Ye Chang, Yuan Li, Ning Ye, Xiaofan Guo and Guozhe Sun performed the experiments; Ye Chang analyzed the data; Ye Chang wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingxian Sun.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Y., Li, Y., Ye, N. et al. Atorvastatin inhibits the apoptosis of human umbilical vein endothelial cells induced by angiotensin II via the lysosomal-mitochondrial axis. Apoptosis 21, 977–996 (2016). https://doi.org/10.1007/s10495-016-1271-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1271-0

Keywords

Navigation