Skip to main content

Advertisement

Log in

Mephebrindole, a synthetic indole analog coordinates the crosstalk between p38MAPK and eIF2α/ATF4/CHOP signalling pathways for induction of apoptosis in human breast carcinoma cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The efficacy of cancer chemotherapeutics is limited by side effects resulting from narrow therapeutic windows between the anticancer activity of a drug and its cytotoxicity. Thus identification of small molecules that can selectively target cancer cells has gained major interest. Cancer cells under stress utilize the Unfolded protein response (UPR) as an effective cell adaptation mechanism. The purpose of the UPR is to balance the ER folding environment and calcium homeostasis under stress. If ER stress is prolonged, tumor cells undergo apoptosis. In the present study we demonstrated an 3,3′-(Arylmethylene)-bis-1H-indole (AMBI) derivative 3,3′-[(4-Methoxyphenyl) methylene]-bis-(5-bromo-1H-indole), named as Mephebrindole (MPB) as an effective anti-cancer agent in breast cancer cells. MPB disrupted calcium homeostasis in MCF7 cells which triggered ER stress development. Detailed evaluations revealed that mephebrindole by activating p38MAPK also regulated GRP78 and eIF2α/ATF4 downstream to promote apoptosis. Studies extended to in vivo allograft mice models revalidated its anti-carcinogenic property thus highlighting the role of MPB as an improved chemotherapeutic option.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

MPB:

Mephebrindole

UPR:

Unfolded protein response

ER stress:

Endoplasmic reticulum stress

GRP78:

Glucose regulated protein 78

ATF4:

Activating transcription factor 4

CHOP:

CCAAT-enhancer-binding protein homologous protein

eIF2α:

Eukaryotic initiation factor 2α

ChIP:

Chromatin immunoprecipitation

p38 MAPK:

p38 Mitogen activated protein kinase

AMBI:

Aryl methyl bis-indolyl derivative

NAC:

N-Acetyl cysteine

References

  1. Vandewynckel Y-P, Laukens D, Geerts A et al (2013) The paradox of the unfolded protein response in cancer. Anticancer Res 33:4683–4694

    CAS  PubMed  Google Scholar 

  2. Xu C, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Investig 115:2656–2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Verfaillie T, Garg AD, Agostinis P (2013) Targeting ER stress induced apoptosis and inflammation in cancer. Cancer Lett 332:249–264

    Article  CAS  PubMed  Google Scholar 

  4. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13:89–102

    CAS  PubMed  Google Scholar 

  5. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086

    Article  CAS  PubMed  Google Scholar 

  6. Wang S, Kaufman RJ (2012) The impact of the unfolded protein response on human disease. J Cell Biol 197:857–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Harding HP, Zyryanova AF, Ron D (2012) Uncoupling proteostasis and development in vitro with a small molecule inhibitor of the pancreatic endoplasmic reticulum kinase, PERK. J Biol Chem 287:44338–44344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Scheuner D, Song B, mcewen E et al (2001) Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 7:1165–1176

    Article  CAS  PubMed  Google Scholar 

  9. Hai TW, Liu F, Coukos WJ, Green MR (1989) Transcription factor ATF cdna clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev 3:2083–2090

    Article  CAS  PubMed  Google Scholar 

  10. Lu PD, Harding HP, Ron D (2004) Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J Cell Biol 167:27–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vattem KM, Wek RC (2004) Reinitiation involving upstream orfs regulates ATF4 mrna translation in mammalian cells. Proc Natl Acad Sci USA 101:11269–11274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fornace AJ Jr, Alamo I Jr, Hollander MC (1988) DNA damage-inducible transcripts in mammalian cells. Proc Natl Acad Sci USA 85:8800–8804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ma Y, Brewer JW, Diehl JA, Hendershot LM (2002) Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol 318:1351–1365

    Article  CAS  PubMed  Google Scholar 

  14. Ron D, Habener JF (1992) CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev 6:439–453

    Article  CAS  PubMed  Google Scholar 

  15. Nachshon-Kedmi M, Yannai S, Haj A, Fares FA (2003) Indole-3-carbinol and 3,3′-diindolylmethane induce apoptosis in human prostate cancer cells. Food Chem Toxicol 41:745–752

    Article  CAS  PubMed  Google Scholar 

  16. Weng J-R, Tsai C-H, Kulp SK, Chen C-S (2008) Indole-3-carbinol as a chemopreventive and anti-cancer agent. Cancer Lett 262:153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Santi M, Galluzzi L, Lucarini S et al (2011) The indole-3-carbinol cyclic tetrameric derivative ctet inhibits cell proliferation via overexpression of p21/CDKN1A in both estrogen receptor-positive and triple-negative breast cancer cell lines. Breast Cancer Res 13:R33

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yean D, W-r Chao, Green C, Jong L (2007) SR13668: a novel dietary indole analog blocks growth factor-stimulated Akt activation and cell proliferation in various cancer cell lines. Cancer Res 67:3364

    Article  Google Scholar 

  19. Sharma DK, Rah B, Lambu MR et al (2012) Design and synthesis of novel N, N[prime or minute]-glycoside derivatives of 3,3[prime or minute]-diindolylmethanes as potential antiproliferative agents. Medchemcomm 3:1082–1091

    Article  CAS  Google Scholar 

  20. Firouzabadi H, Iranpoor N, Khoshnood A (2007) Aluminum tris (dodecyl sulfate) trihydrate Al(DS)3·3H2O as an efficient Lewis acid–surfactant-combined catalyst for organic reactions in water: efficient conversion of epoxides to thiiranes and to amino alcohols at room temperature. J Mol Catal A 274:109–115

    Article  CAS  Google Scholar 

  21. Robinson JA, Jenkins NS, Holman NA, Roberts-Thomson SJ, Monteith GR (2004) Ratiometric and nonratiometric Ca2+ indicators for the assessment of intracellular free Ca2+ in a breast cancer cell line using a fluorescence microplate reader. J Biochem Biophys Methods 58:227–237

    Article  CAS  PubMed  Google Scholar 

  22. Brewis IA, Morton IE, Mohammad SN, Browes CE, Moore HD (2000) Measurement of intracellular calcium concentration and plasma membrane potential in human spermatozoa using flow cytometry. J Androl 21:238–249

    CAS  PubMed  Google Scholar 

  23. Vines A, mcbean GJ, Blanco-Fernandez A (2010) A flow-cytometric method for continuous measurement of intracellular Ca(2+) concentration. Cytom A 77:1091–1097

    Article  Google Scholar 

  24. Ghosh S, Adhikary A, Chakraborty S et al (2012) Nifetepimine, a Dihydropyrimidone, Ensures CD4(+) T Cell Survival in a Tumor Microenvironment by Maneuvering Sarco(endo)plasmic Reticulum Ca(2+) atpase (SERCA). J Biol Chem 287:32881–32896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen T, Wong Y-S (2009) Selenocystine induces caspase-independent apoptosis in MCF-7 human breast carcinoma cells with involvement of p53 phosphorylation and reactive oxygen species generation. Int J Biochem Cell Biol 41:666–676

    Article  CAS  PubMed  Google Scholar 

  26. Cruickshanks N, Tang Y, Booth L, Hamed H, Grant S, Dent P (2012) Lapatinib and obatoclax kill breast cancer cells through reactive oxygen species-dependent endoplasmic reticulum stress. Mol Pharmacol 82:1217–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Majumdar SK, Valdellon JA, Brown KA (2001) In vitro investigations on the toxicity and cell death induced by tamoxifen on two non-breast cancer cell types. J Biomed Biotechnol 1:99–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Suberu JO, Romero-Canelón I, Sullivan N, Lapkin AA, Barker GC (2014) Comparative cytotoxicity of artemisinin and cisplatin and their interactions with chlorogenic acids in mcf7 breast cancer cells. ChemMedChem 9:2791–2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang S, Konorev EA, Kotamraju S, Joseph J, Kalivendi S, Kalyanaraman B (2004) Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms: intermediacy of H2O2- and P53-dependent pathways. J Biol Chem 279:25535–25543

    Article  CAS  PubMed  Google Scholar 

  30. Wozniak K, Kolacinska A, Blasinska-Morawiec M et al (2007) The DNA-damaging potential of tamoxifen in breast cancer and normal cells. Arch Toxicol 81:519–527

    Article  CAS  PubMed  Google Scholar 

  31. Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249–258

    Article  CAS  PubMed  Google Scholar 

  32. Jiang HY, Wek RC (2005) Phosphorylation of the alpha-subunit of the eukaryotic initiation factor-2 (eif2alpha) reduces protein synthesis and enhances apoptosis in response to proteasome inhibition. J Biol Chem 280:14189–14202

    Article  CAS  PubMed  Google Scholar 

  33. Kim R, Emi M, Tanabe K, Murakami S (2006) Role of the unfolded protein response in cell death. Apoptosis Int J Program Cell Death 11:5–13

    Article  CAS  Google Scholar 

  34. Boyce M, Bryant KF, Jousse C et al (2005) A selective inhibitor of eif2alpha dephosphorylation protects cells from ER stress. Science 307:935–939

    Article  CAS  PubMed  Google Scholar 

  35. Drexler HC (2009) Synergistic apoptosis induction in leukemic cells by the phosphatase inhibitor salubrinal and proteasome inhibitors. PLoS One 4:e4161

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wada T, Penninger JM (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23:2838–2849

    Article  CAS  PubMed  Google Scholar 

  37. Zarubin T, Han J (2005) Activation and signaling of the p38 MAP kinase pathway. Cell Res 15:11–18

    Article  CAS  PubMed  Google Scholar 

  38. Ghosh AP, Klocke BJ, Ballestas ME, Roth KA (2012) CHOP potentially co-operates with FOXO3a in neuronal cells to regulate PUMA and BIM expression in response to ER stress. PLoS One 7:e39586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Enyedi B, Varnai P, Geiszt M (2010) Redox state of the endoplasmic reticulum is controlled by Ero1L-alpha and intraluminal calcium. Antioxid Redox Signal 13:721–729

    Article  CAS  PubMed  Google Scholar 

  40. Mccullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating BCL-2 and perturbing the cellular redox state. Mol Cell Biol 21:1249–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  CAS  PubMed  Google Scholar 

  42. Mattson MP, Chan SL (2003) Calcium orchestrates apoptosis. Nat Cell Biol 5:1041–1043

    Article  CAS  PubMed  Google Scholar 

  43. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565

    Article  CAS  PubMed  Google Scholar 

  44. Puthalakath H, O’Reilly LA, Gunn P et al (2007) ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129:1337–1349

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to Prof. Tamara Lah and Dr. Neža Podergajs, National Institute of Biology, Ljubljana, Slovenia for kindly gifting us the MCF 10A cell line. Thanks are due to A. Basu, R. Dutta and K. Das for technical help. This work was supported by the grants from Department of Atomic Energy, Gov’t of India. Authors acknowledge Bose Institute and The Center for Research in Nanoscience and Nanotechnology, University of Calcutta, for providing some instrumental facilities. SC thanks DBT for the RGYI Grant BT/PR6627/GBD/27/440/2012.

Authors contributions

SC, SG, BB, and PCS conceived the study and designed the experiments. SC, SG, BB, AS, JB performed the experiments. SC, AA, SC, AKM analyzed the data and prepared the figures. SC and SG wrote the paper. PCS supervised the study and revised the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parimal C. Sen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Ghosh, S., Banerjee, B. et al. Mephebrindole, a synthetic indole analog coordinates the crosstalk between p38MAPK and eIF2α/ATF4/CHOP signalling pathways for induction of apoptosis in human breast carcinoma cells. Apoptosis 21, 1106–1124 (2016). https://doi.org/10.1007/s10495-016-1268-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1268-8

Keywords

Navigation